Features

- DisplayPort ${ }^{\mathrm{TM}} 1.1 \mathrm{a}$ operation at reduced bit rate $(1.62 \mathrm{Gbps})$ and high bit rate (2.7 Gbps)
- Jitter elimination circuits automatically adjust link via training path
- Pre-Emphasis, and output swing
- Can support all 4 levels of output swing and 4 levels output pre-emphasis, as specified in the DisplayPort 1.1a spec.
- AUX interception circuit only listens to the link training, but does not affect link training
- Low insertion loss across the AUX signal path (0.35 dB @1Mbps)
- Output can support dual mode DP by providing DDC signals across the AUX_sink pins
- Using Cable Detect pin from DP connector (pin 13), the switch can toggle between DP and TMDS mode.
- Automatic power down state when HPD signal is LOW
- Enters low power mode when no data signal is present
- Dual power supply (1.5V and 3.3 V)
- 2KV HBM ESD protection
- 50 ohm output termination can be turned off when port is off
- Port is turned off automatically when not needed
- Package (Pb-Free \& Green available)
- 36-pin TQFN (ZF)

Block Diagram

Description

The PI2EQXDP101-A is a one Input and one Output DisplayPort ${ }^{\text {TM }}$ ReDriver ${ }^{\text {TM }}$ that support a maximum data rate of 2.7 Gbps through each channel, which results in a total of 10.8 Gbps through-put.
Output Level Swing and Output Pre-emphasis and number of active lanes are controlled by decoding the AUX command during link initialization. Also, utilizing the HPD signals from each DisplayPort port, the PI2EQXDP101-A can automatically enter power down state. Or, if the graphics driver is off and has no output signal, Pericom's PI2EQXDP101-A can automatically enter low power mode, even if an active monitor is attached.

Pin Diagram (Top-side View)

Pin Description			
Pin \#	Name	1/0	Description
33	AUX_SRC+	I/O	Aux positive channel on source side
32	AUX_SRC-	1/0	Aux negative channel on source side
12	CAD	Output	Cable Detect to source
14	CAD_Sink	Input	Cable Detect from DP connector, with 200K-Ohm pull-down.
34	DDC_SCL	I/O	$\mathrm{I}^{2} \mathrm{C}$ SCL clock on source side
31	DDC_SCL/AUX+	I/O	Aux channel positive when configured as DP mode, $\mathrm{I}^{2} \mathrm{C}$ SCL clock when configured as TMDS mode
35	DDC_SDA	I/O	$\mathrm{I}^{2} \mathrm{C}$ SDA data on source side Aux channel negative when configured as DP mode, $\mathrm{I}^{2} \mathrm{C}$ SDA data
30	DDC_SDA/AOX-	I/O	when configured as TMDS mode
8, 18, 24, Center	GND	Power	Ground
Pad			-
15	HPD_Sink	Input	Hot Plug detect from sink side, with 200K-Ohm pull-down.
13	HPDSRC	Output Imput	Hot Plug detect to source Lante 0 data imput, differentriat pair
1	IN0+		
2	IN0-		
3	IN1+	Input	Lante I data input, differential pair
4	IN1-		
6	IN2+	Input	Lane 2 data input, differentrial pair
7	IN2-		
$\begin{array}{\|l\|} \hline 9 \\ 10 \end{array}$	$\begin{array}{\|l\|} \hline \text { IN3+ } \\ \text { IN3- } \end{array}$	Input	Lane 3 data input, differential pair
16	NC	-	No Connect
28	OUT0+	Output	Lame 0 data output, differential pair
27	OUT0-		
26	OUT1+	Output	Lane I data output, differential pair
25	OUT1-		
23	OUT2+	Output	Lante 2 data output, differentiat pair
22	OUT2-		
20	OUT3+	Output	Lame 3 data
19	OUT3-		
5,11, 17, 21, 29	VDD15	Power	Power Supply, $1.5 \mathrm{~V} \pm 5 \%$
36	VDD33	Power	Power Supply, 3.3V $\pm 5 \%$

AUX listener Register Assignment

AUX command are stored interpreted and stored in the registers, ReDriver will then be re-configured by default. Registers do not have a power-on default state.

AUX listener specification

DP AUX command interpreter will support Native AUX CH Syntax. Mapping of $\mathrm{I}^{2} \mathrm{C}$ onto AUX CH Syntax is not supported.
AUX command interpreter monitor AUX channel from requester and replier for transactions and stored AUX command from requester and reply command from replier that are related to the link settings.

The data from the following addresses will be extracted and stored into internal registers for controlling the ReDriver signal level, lane count and pre-emphasis setting.

00101h LANE_COUNT_SET
00103h TRAINING_LANE0_SET
00104h TRAINING_LANE1_SET
00105h TRAINING_LANE2_SET
00106h TRAINING_LANE3_SET

Application Diagram

AUX Channel	Electrical Specifications					
Symbol V_{I}	Parameter AUX Unit Interval	Conditions 1 Mbps including overhead of Mancester II coding	$\begin{aligned} & \hline \text { Min } \\ & 0.4 \end{aligned}$	$\begin{aligned} & \text { Nom } \\ & 0.5 \end{aligned}$	$\begin{aligned} & \text { Max } \\ & 0.6 \end{aligned}$	$\begin{aligned} & \text { Units } \\ & \mu \mathrm{S} \end{aligned}$
$\begin{array}{\|l} \text { Pre-charge } \\ \hline \text { putses } \end{array}$	Number of pre-charge	Each pulse is a ' 0 ' in Manchester	10		16	
	pulises Number of syme putses	II code.		16		
$V_{\text {AU*-PIFTp-p }}$	AUX Peak-to-peak Voltage at a receiving Device	$\begin{aligned} & \hline \mathrm{V}_{\text {AUX-DIFFp-p }} \\ & \hline=2^{*} \mid \mathrm{V}_{\mathrm{AUX}}+-\mathrm{V}_{\mathrm{AUX}}-\mathrm{I} \end{aligned}$	0.32		1.36	V
AUX ${ }_{\text {ATTEN }}$	AUX attenuation	with 100-Ohm termination		1.5	2.0	dB
VAUXP-DC V $_{\text {AUXN-DC }}$ IAUX_SHORT	AUX+ DC Voltage Range AUX- DC Voltage Range AUX Short Circuit Current		$\begin{array}{\|l\|} \hline 0 \\ 1.3 \end{array}$		$\begin{aligned} & 2.0 \\ & 3.3 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{C}_{\text {AUX }}$	AUX AC Coupling Capacitor	The AUX CH AC coupling capacitor placed on the DisplayPort Source	75		200	nF

Note:

1. For Reduced Bit Rate (1- TRX-EYE_CONN) specifies the allowable TJ. TRX-EYE-MEDIAN-to-MAX-JITTER specifies the total allowable DJ

Main Link Transmitter (Main TX) Specifications

Symbol	Parameters	Comments	Min.	Typ.	Max.	Units
UI_High_Rate	Unit Interval for high bit rate (2.7 Gbps / lane)	High limit $=+300 \mathrm{ppm}$ Low limit $=-5300 \mathrm{ppm}$		370		ps
UI_Low_Rate	Unit Interval for low bit rate (1.62 Gbps / lane)			617		ps
$\mathrm{V}_{\text {TX-DIFFp-p }}$	Differential Peak-to-peak Output Voltage	HBR, VDD15 $=1.5 \mathrm{~V}$ Voltage level 1 Voltage level 2 Voltage level 3 Voltage level 4	$\begin{array}{\|l} \hline 340 \\ \\ 340 \\ 510 \\ 690 \\ 1020 \end{array}$	$\begin{aligned} & 400 \\ & 600 \\ & 800 \\ & 1200 \\ & \hline \end{aligned}$	$\begin{aligned} & 1380 \\ & \\ & 460 \\ & 680 \\ & 920 \\ & 1380 \\ & \hline \end{aligned}$	mV
VTX-PREEMPRATIO	Output Pre-emphasis ratio	HBR, VDD15 $=1.5 \mathrm{~V}$ No pre-emphasis 3.5 dB pre-emphasis 6.0 dB pre-emphasis 9.5 dB pre-emphasis	$\begin{array}{\|l\|} \hline 0.0 \\ 0.0 \\ 2.8 \\ 4.8 \\ 7.6 \end{array}$	$\begin{aligned} & 0.0 \\ & 3.5 \\ & 6.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & \hline 11.4 \\ & 0.0 \\ & 4.2 \\ & 7.2 \\ & 11.4 \\ & \hline \end{aligned}$	dB
TTX-EYE_CHIP High_Rate	Minimum TX Eye Width at Tx package pins	For High Bit Rate	0.726			UI
TTX-EYE- MEDIAN-to-MAX- JITTER_CHIP__ High_Rate	Maximum time between the jitter median and maximum deviation from the median at Tx package pins	For High Bit Rate			0.137	UI
TTX-EYE_CHIP Low_Rate	Minimum TX Eye Width at Tx package pins	For Reduced Bit Rate	0.82			UI
TTX-EYE- MEDIAN-to-MAX- JITTER_CHIP__ Low Rate	Minimum TX Eye Width at Tx package pins	For Reduced Bit Rate			0.09	UI
TTX-RISE CHIP, TTX-FALL CHIP	D+/D- TX Output Rise/Fall Time at Tx package pins	At 20\%-to-80\%	50		130	ps
$\mathrm{V}_{\text {TX-DC-CM }}$	TX DC Common Mode Voltage	Common mode voltage is equal to Vbias_Tx voltage shown in Differential Waveform	0		1.5	V
$\mathrm{V}_{\text {TX-AC-CM }}$	TX AC Common Mode Voltage	Measured at 1.62 GHz and 2.7 GHz (if supported), within the frequency tolerance range. Time-domain measurement using a spectrum analyzer.			20	mV
$\mathrm{I}_{\text {TX-SHORT }}$	TX Short Circuit Current Limit	Total drive current of the transmitter when it is shorted to its ground.			50	mA
	Differential Return Loss at 0.675 GHz at TX package pins	Straight loss line between 0.675 GHz and 1.35 GHz	12			dB
RLTX-DIFF	Differential Return Loss at 1.35 GHz at TX package pins	Straight loss line between 0.675 GHz and 1.35 GHz	9			dB

(Continued)

Symbol	Parameters	Comments	Min.	Typ.	Max.	Units
LTX-SKEWINTER PAIR	Lane-to-Lane Output Skew at Tx package pins				2	UI
LTX-SKEWIN- TRA PAIR	Lane Intra-pair Output Skew at Tx package pins				20	ps
TTX-RISE_FALL _MISMATCH CHIPDIFF	Lane Intra-pair Rise-fall Time Mismatch at Tx package pins.	Informative. $\mathrm{D}+$ rise to D - fall mismatch and $\mathrm{D}+$ fall to D - rise mismatch.			5	\%
$\mathrm{C}_{\text {TX }}$	AC Coupling Capacitor	All DisplayPort Main Link lanes as well as AUX CH must be AC coupled. AC coupling capacitors must be placed on the transmitter side. Placement of AC coupling capacitors the receiver side is optional.	75		200	nF
$\mathrm{J}_{\text {TOTAL }}$	Total Output Jitter				0.32	UIp-p

Notes:

1. Refer to Pre-emphasis waveform. For embedded connection, support of programmable voltage swing levels is optional.
2. Refer to Pre-emphasis waveform for definition of differential voltage. Support of no preemphasis, 3.5 dB and 6.0 dB pre-emphasis is required. Support of 9.5 dB level is optional. For embedded connection, support of programmable preemphasis levels is optional.

Definition of Differential Voltage and Differential Voltage Peak-to-Peak

Definition of Pre-emphasis

Output Waveform (400mV, 0dB pre-emphasis)

Output Waveform (400 mV , 6dB pre-emphasis)

Output Eye Diagram (2.7Gbps, 1200mV)

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- $\mathrm{E}=\mathrm{Pb}$-free and Green
- Adding an X suffix $=$ Tape $/$ Reel

