
BOURNS®

- Designed for Complementary Use with the BD245 Series
- 80 W at 25°C Case Temperature
- 10 A Continuous Collector Current
- 15 A Peak Collector Current
- Customer-Specified Selections Available

Pin 2 is in electrical contact with the mounting base.

MDTRAAA

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT		
	BD246		-55		
Collector-emitter voltage ($R_{RF} = 100 \Omega$)	BD246A	N.	-70	V	
Collector-enlitter voltage (n _{BE} = 100 sz)	BD246B	VCER	-90	V	
	BD246C		-115		
	BD246	V _{CEO}	-45	V	
Collector-emitter voltage (I _C = -30 mA)	BD246A		-60		
	BD246B		-80		
	BD246C		-100		
Emitter-base voltage		V _{EBO}	-5	V	
Continuous collector current		I _C	-10	Α	
Peak collector current (see Note 1)		I _{CM}	-15	Α	
Continuous base current	I _B	-3	Α		
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)	P_{tot}	80	W		
Continuous device dissipation at (or below) 25°C free air temperature (see Note 3	3)	P_{tot}	3	W	
Unclamped inductive load energy (see Note 4)		½Ll _C ²	62.5	mJ	
Operating junction temperature range		T _j	-65 to +150	°C	
Storage temperature range		T _{stg}	-65 to +150	°C	
Lead temperature 3.2 mm from case for 10 seconds		T_L	250	°C	

NOTES: 1. This value applies for $t_p \le 0.3$ ms, duty cycle $\le 10\%$.

- 2. Derate linearly to 150°C case temperature at the rate of 0.64 W/°C.
- 3. Derate linearly to 150°C free air temperature at the rate of 24 mW/°C.
- 4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = -0.4 A, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = -20 V.

electrical characteristics at 25°C case temperature

PARAMETER			TEST CONDITION	NDITIONS			MAX	UNIT
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C = -30 mA	1 -0	BD246 BD246A	-45 -60			V
		(see Note 5)	I _B = 0	BD246B BD246C	-80 -100			V
		V _{CE} = -55 V	$V_{BE} = 0$	BD246			-0.4	
loso	Collector-emitter	$V_{CE} = -70 \text{ V}$	$V_{BE} = 0$	BD246A			-0.4	mA
ICES	cut-off current	$V_{CE} = -90 V$	$V_{BE} = 0$	BD246B			-0.4	
		V _{CE} = -115 V		BD246C			-0.4	
lone	Collector cut-off	V _{CE} = -30 V	I _B = 0	BD246/246A			-0.7	mA
ICEO	current	$V_{CE} = -60 \text{ V}$	$I_B = 0$	BD246B/246C			-0.7	ША
I _{EBO}	Emitter cut-off current	V _{EB} = -5 V	I _C = 0				-1	mA
	Forward current	V _{CE} = -4 V	I _C = -1 A		40			
h _{FE}	transfer ratio	V _{CE} = -4 V	$I_C = -3 A$	(see Notes 5 and 6)	20			
		V _{CE} = -4 V	$I_C = -10 \text{ A}$		4			
V _{CE(sat)}	Collector-emitter	I _B = -0.3 A	$I_C = -3 A$	(see Notes 5 and 6)			-1	V
• CE(sat)	saturation voltage	I _B = -2.5 A	I _C = -10 A				-4	•
V _{BE}	Base-emitter	V _{CE} = -4 V	I _C = -3 A	(see Notes 5 and 6)			-1.6	V
, RE	voltage	V _{CE} = -4 V	$I_C = -10 A$	(600 110100 0 011010)			-3	·
h _{fe}	Small signal forward current transfer ratio	V _{CE} = -10 V	I _C = -0.5 A	f = 1 kHz	20			
h _{fe}	Small signal forward current transfer ratio	V _{CE} = -10 V	I _C = -0.5 A	f = 1 MHz	3			

NOTES: 5. These parameters must be measured using pulse techniques, $t_p = 300$ µs, duty cycle $\leq 2\%$.

thermal characteristics

PARAMETER	MIN	TYP	MAX	UNIT
R _{0JC} Junction to case thermal resistance			1.56	°C/W
R _{eJA} Junction to free air thermal resistance			42	°C/W

resistive-load-switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS †			MIN	TYP	MAX	UNIT
t _{on}	Turn-on time	I _C = -1 A	$I_{B(on)} = -0.1 A$	$I_{B(off)} = 0.1 A$		0.2		μs
t _{off}	Turn-off time	$V_{BF(off)} = 3.7 \text{ V}$	$R_1 = 20 \Omega$	$t_{\rm p} = 20 \ \mu s, \ dc \le 2\%$		0.8		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

^{6.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

TYPICAL CHARACTERISTICS

TYPICAL DC CURRENT GAIN VS COLLECTOR CURRENT $T_{CS634AG}$ $T_{C} = 25^{\circ}C$ $T_{C} = 300 \, \mu s, \, duty \, cycle < 2\%$ $T_{C} = 25^{\circ}C$ T

Figure 1.

COLLECTOR-EMITTER SATURATION VOLTAGE

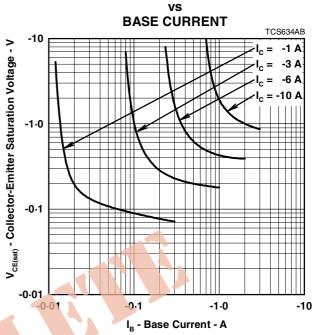


Figure 2.

BASE-EMITTER VOLTAGE vs COLLECTOR CURRENT

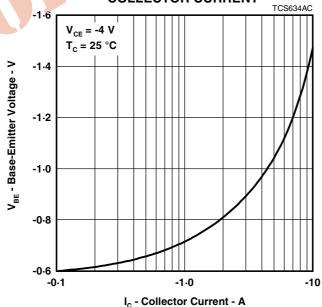


Figure 3.

MAXIMUM SAFE OPERATING REGIONS

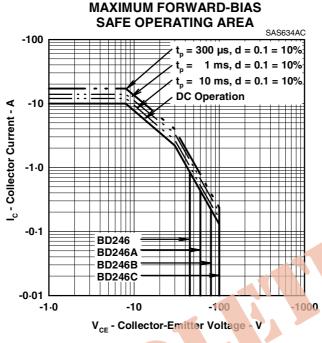


Figure 4

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION

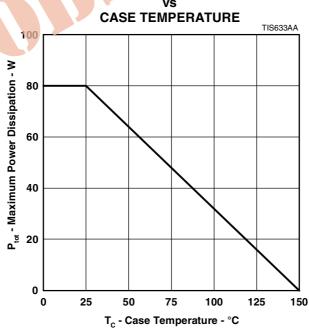


Figure 5.