# CMPA0060025F ### 25 W, 20 MHz-6000 MHz, GaN MMIC Power Amplifier Cree's CMPA0060025F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC enables extremely wide bandwidths to be achieved in a small footprint screw-down package. PN: CMPA0060025F Package Type: 780019 ### Typical Performance Over 20 MHz - 6.0 GHz (T<sub>c</sub> = 25°C) | Parameter | 20 MHz | 0.5 GHz | 1.0 GHz | 2.0 GHz | 3.0 GHz | 4.0 GHz | 5.0 GHz | 6.0 GHz | Units | |-----------------------------------------|--------|---------|---------|---------|---------|---------|---------|---------|-------| | Gain | 21.4 | 20.1 | 19.3 | 16.7 | 16.6 | 16.8 | 15.7 | 15.5 | dB | | Output Power @ P <sub>IN</sub> = 32 dBm | 26.9 | 30.2 | 26.3 | 23.4 | 24.5 | 24.0 | 20.9 | 18.6 | W | | Power Gain @ P <sub>IN</sub> = 32 dBm | 12.3 | 12.8 | 12.2 | 11.7 | 11.9 | 11.8 | 11.3 | 10.7 | dB | | Efficiency @ P <sub>IN</sub> = 32 dBm | 63 | 55 | 40 | 31 | 33 | 31 | 28 | 26 | % | Note<sup>1</sup>: $V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA}$ #### **Features** - 17 dB Small Signal Gain - 25 W Typical P<sub>SAT</sub> - Operation up to 50 V - High Breakdown Voltage - High Temperature Operation - 0.5" x 0.5" total product size ### **Applications** - Ultra Broadband Amplifiers - Test Instrumentation - EMC Amplifier Drivers # Absolute Maximum Ratings (not simultaneous) at 25°C | Parameter | Symbol | Rating | Units | |-------------------------------------------|-----------------------------|-----------|-------| | Drain-source Voltage | V <sub>DSS</sub> | 84 | VDC | | Gate-source Voltage | $V_{\sf GS}$ | -10, +2 | VDC | | Storage Temperature | $T_{\mathtt{STG}}$ | -65, +150 | °C | | Operating Junction Temperature | $T_{\!\scriptscriptstyleJ}$ | 225 | °C | | Maximum Forward Gate Current | I <sub>GMAX</sub> | 4 | mA | | Soldering Temperature <sup>1</sup> | $T_{s}$ | 245 | °C | | Screw Torque | τ | 40 | in-oz | | Thermal Resistance, Junction to Case | $R_{_{ ext{ ilde BJC}}}$ | 3.3 | °C/W | | Case Operating Temperature <sup>2,3</sup> | T <sub>c</sub> | -40, +150 | °C | #### Note: # Electrical Characteristics (Frequency = 20 MHz to 6.0 GHz unless otherwise stated; $T_{\rm c}$ = 25°C) | Characteristics | Symbol | Min. | Тур. | Max. | Units | Conditions | | | |------------------------------------------------|-------------------|------|------|------|-------|--------------------------------------------------------------------------------------|--|--| | DC Characteristics | | | | | | | | | | Gate Threshold Voltage <sup>2</sup> | $V_{(GS)TH}$ | -3.8 | -3.0 | -2.3 | V | $V_{DS} = 20 \text{ V, } \Delta I_{D} = 20 \text{ mA}$ | | | | Gate Quiescent Voltage | $V_{(GS)Q}$ | - | -2.7 | - | VDC | $V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA, } P_{IN} = 32 \text{ dBm}$ | | | | Saturated Drain Current | I <sub>DC</sub> | - | 12 | - | Α | $V_{DS}$ = 12 V, $V_{GS}$ = 2.0 V | | | | RF Characteristics <sup>1</sup> | | | | | | | | | | Power Output at P <sub>OUT</sub> @ 4.5 GHz | P <sub>out1</sub> | 41.0 | 42.8 | - | dBm | $V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA, } P_{IN} = 32 \text{ dBm}$ | | | | Power Output at P <sub>OUT</sub> @ 5.0 GHz | P <sub>OUT2</sub> | 41.0 | 43.3 | - | dBm | $V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA, } P_{IN} = 32 \text{ dBm}$ | | | | Power Output at P <sub>OUT</sub> @ 6.0 GHz | Роитз | 41.0 | 42.9 | - | dBm | $V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA, } P_{IN} = 32 \text{ dBm}$ | | | | Drain Efficiency at P <sub>OUT</sub> @ 4.5 GHz | η1 | 18.0 | 24.1 | - | % | $V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA, } P_{IN} = 32 \text{ dBm}$ | | | | Drain Efficiency at P <sub>OUT</sub> @ 5.0 GHz | η2 | 18.0 | 28.0 | - | % | $V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA, } P_{IN} = 32 \text{ dBm}$ | | | | Drain Efficiency at P <sub>OUT</sub> @ 6.0 GHz | η3 | 18.0 | 27.2 | - | % | $V_{DD} = 50 \text{ V, } I_{DQ} = 500 \text{ mA, } P_{IN} = 32 \text{ dBm}$ | | | | Output Mismatch Stress | VSWR | - | - | 5:1 | Ψ | No damage at all phase angles, $V_{DD}$ = 50 V, $I_{DQ}$ = 500 mA, $P_{IN}$ = 32 dBm | | | ### Small Signal RF Characteristics | | | S21 | | | S11 | | | S22 | | | |---------------------|------|------|------|------|-------|-------|------|------|------|--------------------------------------------------| | Frequency | Min. | Тур. | Max. | Min. | Тур. | Max. | Min. | Тур. | Max. | Conditions | | 0.02 GHz - 0.25 GHz | 18.0 | 19.3 | 23.7 | - | -4.1 | -2.5 | - | -8.5 | -4.5 | V <sub>DD</sub> = 50 V, I <sub>DQ</sub> = 500 mA | | 0.25 GHz - 0.5 GHz | 18.0 | 19.8 | 22.0 | - | -6.8 | -3.5 | - | -8.9 | -4.5 | V <sub>DD</sub> = 50 V, I <sub>DQ</sub> = 500 mA | | 0.5 GHz - 1.0 GHz | 15.5 | 18.6 | 22.0 | - | -15.3 | -6.5 | - | -6.7 | -4.5 | V <sub>DD</sub> = 50 V, I <sub>DQ</sub> = 500 mA | | 1.0 GHz - 2.0 GHz | 15.5 | 18.6 | 22.0 | - | -15.3 | -12.5 | - | -6.7 | -4.5 | V <sub>DD</sub> = 50 V, I <sub>DQ</sub> = 500 mA | | 2.0 GHz - 3.0 GHz | 13.0 | 18.6 | 20.0 | - | -15.3 | -12.5 | - | -6.0 | -2.5 | V <sub>DD</sub> = 50 V, I <sub>DQ</sub> = 500 mA | | 3.0 GHz - 6.0 GHz | 13.0 | 16.3 | 20.0 | - | -14.2 | -6.5 | - | -5.3 | -2.5 | V <sub>DD</sub> = 50 V, I <sub>DQ</sub> = 500 mA | <sup>&</sup>lt;sup>1</sup> Refer to the Application Note on soldering at <a href="https://www.cree.com/RF/Document-Library">www.cree.com/RF/Document-Library</a> $<sup>^{2}</sup>$ Measured for the CMPA0060025F at P $_{IN}$ = 32 dBm. Notes: $^{1}$ P<sub>OUT</sub> is defined as P<sub>IN</sub> = 32 dBm. <sup>&</sup>lt;sup>2</sup> The device will draw approximately 55-70 mA at pinch off due to the internal circuit structure. # **Typical Performance** www.cree.com/rf Copyright © 2009-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc. Other trademarks, product and company names are the property of their respective owners and do not imply specific product and/or vendor endorsement, sponsorship or association. # **Typical Performance** # Output Power at $P_{IN}$ = 32 dBm vs Frequency as a Function of Drain Voltage # Power Gain at $P_{IN}$ = 32 dBm vs Frequency as a Function of Drain Voltage # Drain Efficiency at $P_{IN}$ = 32 dBm vs Frequency as a Function of Drain Voltage # **Typical Performance** # Gain vs Input Power at 50V # Efficiency vs Input Power at 50 V as a Function of Frequency # Gain vs Input Power at 40V as a Function of Frequency # Efficiency vs Input Power at 40 V as a Function of Frequency www.cree.com/rf ### **General Device Information** The CMPA0060025F is a GaN HEMT MMIC Power Amplifier, which operates between 20 MHz - 6.0 GHz. The amplifier typically provides 17 dB of small signal gain and 25 W saturated output power with an associated power added efficiency of better than 20 %. The wideband amplifier's input and output are internally matched to 50 Ohm. The amplifier requires bias from appropriate Bias-T's, through the RF input and output ports. The CMPA0060025F is provided in a flange package format. The input and output connections are gold plated to enable gold bond wire attach at the next level assembly. The measurements in this data sheet were taken on devices wire-bonded to the test fixture with 2 mil gold bond wires. The CMPA0060025F-AMP1 and the device were then measured using external Bias-T's, (TECDIA: AMP1T-H06M20 or similar), as shown in Figure 2. The Bias-T's were included in the calibration of the test system. All other losses associated with the test fixture are included in the measurements. Figure 2. Typical test system setup required for measuring CMPA0060025F-AMP1 # CMPA0060025F Power Dissipation De-rating Curve Note 1. Area exceeds Maximum Case Operating Temperature (See Page 2). ### **Electrostatic Discharge (ESD) Classifications** | Parameter | Symbol | Class | Test Methodology | |---------------------|--------|------------------|---------------------| | Human Body Model | НВМ | 1A (> 250 V) | JEDEC JESD22 A114-D | | Charge Device Model | CDM | II (200 < 500 V) | JEDEC JESD22 C101-C | ### CMPA0060025F-AMP Demonstration Amplifier Circuit ### CMPA0060025F-AMP Demonstration Amplifier Circuit Outline ### CMPA0060025F-AMP Demonstration Amplifier Circuit Bill of Materials | Designator | Description | Qty | |------------|--------------------------------|-----| | J1,J2 | CONNECTOR, SMA, AMP11052901-1 | 2 | | - | PCB, TACONIC, RF-35-0100-CH/CH | 1 | | Q1 | CMPA0060025F | 1 | #### Notes ### Product Dimensions CMPA0060025F (Package Type - 780019) #### IULE & 1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID. 4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION. 5. ALL PLATED SURFACES ARE NI/AU | | INCHES | | MILLIN | MILLIMETERS | | | |-------|--------|-------|--------|-------------|------|--| | DIM | MIN | MAX | MIN | MAX | NOTE | | | Α | 0.148 | 0.162 | 3.76 | 4.12 | - | | | A1 | 0.066 | 0.076 | 1.67 | 1.93 | - | | | A2 | 0.056 | 0.064 | 1.42 | 1.63 | _ | | | b | 0.0 | 09 | 0 | 24 | ×2 | | | С | 0.0 | 05 | 0. | 13 | x2 | | | D | 0.495 | 0.505 | 12.57 | 12.83 | - | | | D1 | 0.403 | 0.413 | 10.23 | 10.49 | - | | | D2 | 0.4 | 80 | 10 | _ | | | | D3 | 0.243 | 0.253 | 6.17 | 6.43 | _ | | | Ε | 0.495 | 0.505 | 12.57 | 12.83 | _ | | | E1 | 0.475 | 0.485 | 12.06 | 12.32 | _ | | | E2 | 0.3 | 20 | 8. | 8.13 | | | | E3 | 0.155 | 0.165 | 3.93 | 4.19 | - | | | E4 | 0.105 | 0.115 | 2.66 | 2.92 | _ | | | L | 0.0 | 41 | 1.04 | | x2 | | | r | R0.0 | )46 | R1 | R1.17 | | | | r1 | R0.0 | 080 | R2 | R2.03 | | | | - ' ' | | | 11/2 | | x4 | | <sup>&</sup>lt;sup>1</sup>The CMPA0060025F is connected to the PCB with 2.0 mil Au bond wires. <sup>&</sup>lt;sup>2</sup> An external bias T is required. ### **Product Ordering Information** | Order Number | Description | Unit of Measure | lmage | |------------------|------------------------------------|-----------------|--------------| | CMPA0060025F | GaN MMIC | Each | CHER COTE 29 | | CMPA0060025F-TB | Test board without GaN MMIC | Each | | | CMPA0060025F-AMP | Test board with GaN MMIC installed | Each | | ### **Disclaimer** Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for its use or for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications, and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended, or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death, or in applications for the planning, construction, maintenance or direct operation of a nuclear facility. CREE and the CREE logo are registered trademarks of Cree, Inc. For more information, please contact: Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/RF Sarah Miller Marketing Cree, RF Components 1.919.407.5302 Ryan Baker Marketing & Sales Cree, RF Components 1.919.407.7816 Tom Dekker Sales Director Cree, RF Components 1.919.407.5639