CB LC75841PE

Static Drive, 1/2-Duty Drive General-Purpose LCD Display Driver

Overview

The LC75841PE is static drive or 1/2-duty drive, microcontroller-controlled general-purpose LCD driver that can be used in applications such as frequency display in products with electronic tuning. In addition to being capable to drive up to 54 segments directly, it can control up to 4 general-purpose output ports.

Features

- Serial data control of switching between static drive mode and 1/2 duty drive mode.
 - When 1/1-duty: Capable of driving up to 27 segments
 - When 1/2-duty: Capable of driving up to 54 segments
- Serial data input supports CCB format communication with the system controller.
- Serial data control of the power-saving mode based backup function and the all segments forced off function.
- Serial data control of switching between the segment output port and general-purpose output port functions (up to 4 general-purpose output ports).
- Serial data control of the frame frequency of the common and segment output waveforms.
- Either RC oscillator operating or external clock operating mode can be selected with the serial control data.
- High generality, since display data is displayed directly without the intervention of a decoder circuit.
- The $\overline{\text{INH}}$ pin allows the display to be forced to the off state.
- Allows compatible operation with the LC75842 (842 mode transfer function).

• CCB is ON Semiconductor® 's original format. All addresses are managed by ON Semiconductor® for this format.

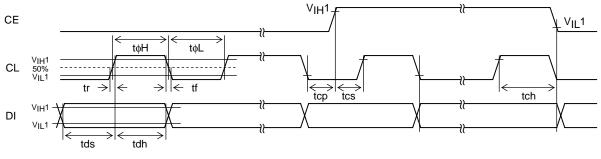
• CCB is a registered trademark of Semiconductor Components Industries, LLC.

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$, $V_{SS} = 0V$

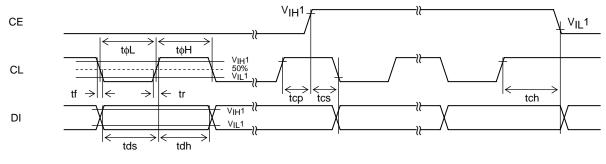
Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max	V _{DD}	-0.3 to +7.0	V
Input voltage	V _{IN} 1	CE, CL, DI, INH	-0.3 to +7.0	
	V _{IN} 2	OSC	-0.3 to V _{DD} +0.3	V
Output voltage	VOUT	S1 to S27, COM1, COM2, P1 to P4, OSC	-0.3 to V _{DD} +0.3	V
Output current	I _{OUT} 1	S1 to S27	300	μA
	I _{OUT} 2	COM1, COM2	3	
	I _{OUT} 3	P1 to P4	5	mA
Allowable power dissipation	Pd max	Ta=105°C	50	mW
Operating temperature	Topr		-40 to +105	°C
Storage temperature	Tstg		-55 to +125	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

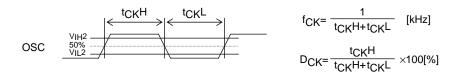

Allowable Operating Ranges at Ta = -40 to +105°C, V_{SS} = 0V

Parameter	Symbol	Conditions			unit		
Parameter	Symbol			min	typ	max	unit
Supply voltage	V _{DD}	V _{DD}		4.0		6.0	V
Input high-level voltage	V _{IH} 1	CE, CL, DI, ĪI	NH	0.45V _{DD}		6.0	Ň
	V _{IH} 2	OSC Externa	I clock operating mode	0.45V _{DD}		V _{DD}	V
Input low-level voltage	V _{IL} 1	CE, CL, DI, ĪI	NH	0		0.2V _{DD}	
	V _{IL} 2	OSC Externa	I clock operating mode	0		0.2V _{DD}	V
Recommended external resistor for RC oscillation	Rosc	OSC RC osc	illator operating mode		39		kΩ
Recommended external capacitor for RC oscillation	Cosc	OSC RC osc	illator operating mode		1000		pF
Guaranteed range of RC oscillation	fosc	OSC RC osc	illator operating mode	19	38	76	kHz
External clock operating frequency	^f CK	OSC External clock operating mode [Figure 3]		19	38	76	kHz
External clock duty cycle	DCK	OSC Externa	I clock operating mode [Figure 3]	30	50	70	%
Data setup time	tds	CL, DI	[Figure 1][Figure 2]	160			ns
Data hold time	tdh	CL, DI	[Figure 1][Figure 2]	160			ns
CE wait time	tcp	CE, CL	[Figure 1][Figure 2]	160			ns
CE setup time	tcs	CE, CL	[Figure 1][Figure 2]	160			ns
CE hold time	tch	CE, CL	[Figure 1][Figure 2]	160			ns
High-level clock pulse width	tφH	CL	[Figure 1][Figure 2]	160			ns
Low-level clock pulse width	tφL	CL	[Figure 1][Figure 2]	160			ns
Rise time	tr	CE, CL, DI	[Figure 1][Figure 2]		160		ns
Fall time	tf	CE, CL, DI	[Figure 1][Figure 2]		160		ns
INH switching time	tc	ĪNH, CE	[Figure 4][Figure 5][Figure 6]	10			μs

LC75841PE

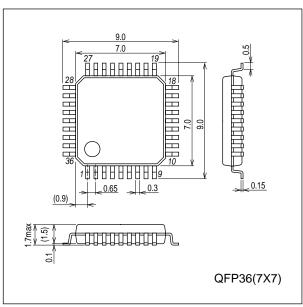

Parameter	Symbol	Pin	Conditions	Ratings			unit
Farameter	Symbol	FIII	Conditions	min	typ	max	unit
Hysteresis	V _H	CE, CL, DI, INH			0.03V _{DD}		V
Input high-level current	I _{IH} 1	CE, CL, DI, INH	V _I =6.0V			5.0	
	I _{IH} 2	OSC	VI=VDD External clock operating mode			5.0	μA
Input low-level current	I _{IL} 1	CE, CL, DI, INH	V _I =0V	-5.0			
	I _{IL} 2	OSC	VI=0V External clock operating mode	-5.0			μA
Output high-level voltage	VOH1	S1 to S27	Ι _Ο =-20μΑ	V _{DD} -0.9			
	V _{OH} 2	COM1, COM2	I _O =-100μA	V _{DD} -0.9			V
	V _{OH} 3	P1 to P4	I _O =-1mA	V _{DD} -0.9			
Output low-level voltage	V _{OL} 1	S1 to S27	Ι _Ο =20μΑ			0.9	
	V _{OL} 2	COM1, COM2	Ι _Ο =100μΑ			0.9	V
	V _{OL} 3	P1 to P4	I _O =1mA			0.9	
Output middle-level voltage	VMID	COM1, COM2	1/2 bias I _O =±100μA	1/2V _{DD} -0.9		1/2V _{DD} +0.9	V
Oscillator frequency	fosc	OSC	RC oscillator operating mode, Rosc=39kΩ, Cosc=1000pF	30.4	38	45.6	kHz
Current drain	I _{DD} 1	V _{DD}	Power-saving mode			15	
	I _{DD} 2	V _{DD}	V _{DD} =6.0V, Output open, RC oscillator operating mode, fosc=38kHz, Static		350	700	
	I _{DD} 3	V _{DD}	V _{DD} =6.0V, Output open, RC oscillator operating mode, fosc=38kHz, 1/2 duty		1500	3000	
	I _{DD} 4	V _{DD}	V _{DD} =6.0V, Output open, External clock operating mode, f _{CK} =38kHz, V _{IH} 2=0.5V _{DD} , V _{IL} 2=0.1V _{DD} , Static		450	900	μΑ
	I _{DD} 5	V _{DD}	V _{DD} =6.0V, Output open, External clock operating mode, f _{CK} =38kHz, V _{IH} 2=0.5V _{DD} , V _{IL} 2=0.1V _{DD} , 1/2 duty		1600	3200	

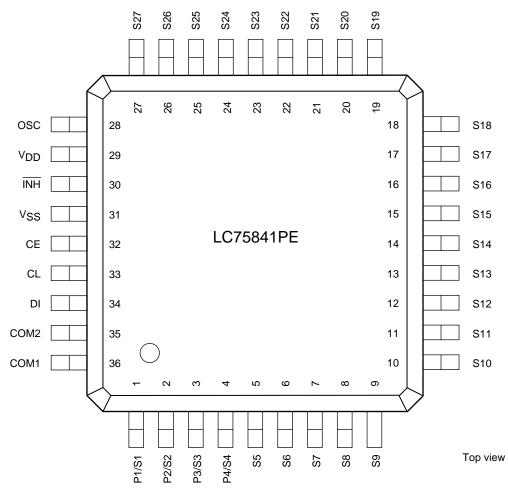
1. When CL is stopped at the low level


[Figure 1]

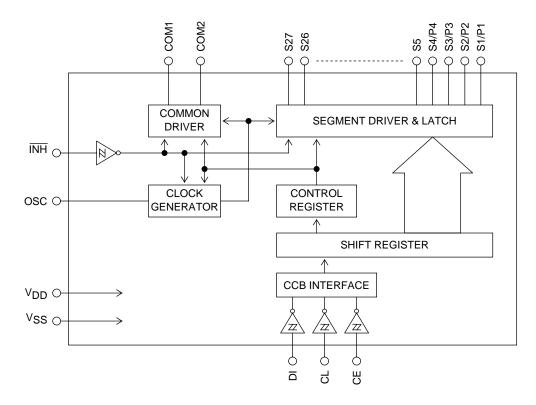
2. When CL is stopped at the high level

[Figure 2]


3. OSC pin clock timing in external clock operating mode

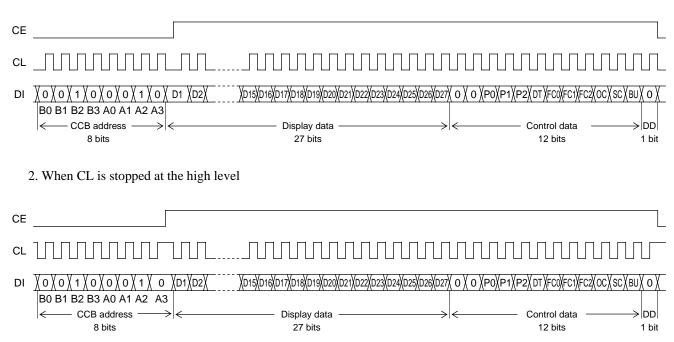

[Figure 3]

Package Dimensions


unit:mm (typ) 3162C

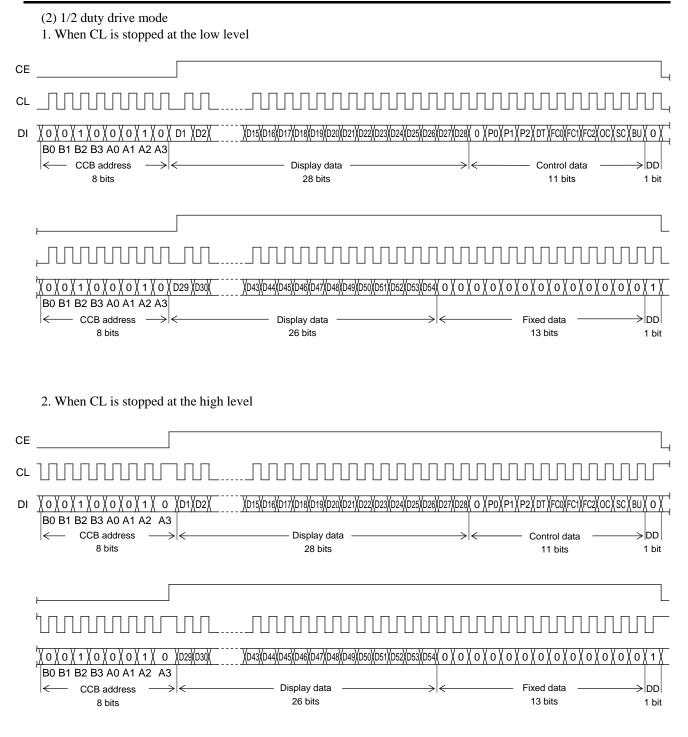
Pin Assignment

Block Diagram


Pin Functions

Symbol	Pin No.	Function	Active	I/O	Handling when unused
S1/P1 to S4/P4 S5 to S27	1 to 4 5 to 27	Segment outputs for displaying the display data transferred by serial data input. The S1/P1 to S4/P4 pins can be used as general-purpose output ports when so set up by the control data.	-	0	OPEN
COM1 COM2	36 35	Common driver outputs. The frame frequency is fo [Hz].	-	0	OPEN
OSC	28	Oscillator connection. An oscillator circuit is formed by connecting an external resistor and capacitor to this pin. This pin can be used as the external clock input pin if external clock operating mode is selected with the control data.	-	I/O	V _{DD}
CE CL DI	32 33 34	Serial data transfer inputs. Must be connected to the controller. CE: Chip enable CL: Synchronization clock DI: Transfer data	H	 	GND
ĪNH	30	Display off control input INH = low (V _{SS})Display forced off \$\$ INH = low (V _{SS})Display forced off \$\$ 1/P1 to \$\$ 4/P4 = low (V _{SS}) (These pins are forcibly set to the segment output port function and held at the V _{SS} level.) \$\$ 5 to \$\$ 27 = low (V _{SS}) COM1, COM2 = low (V _{SS}) OSC = Z (high impedance) RC oscillation stopped Inhibits external clock input. • INH = high (V _{DD})Display on RC oscillation enabled (RC oscillator operating mode) Enables external clock input (external clock operating mode)		I	GND
V _{DD}	29	Power supply. Provide a voltage in the range 4.0 to 6.0V.	-	-	-
V _{SS}	31	Ground pin. Must be connected to ground.	-	-	-

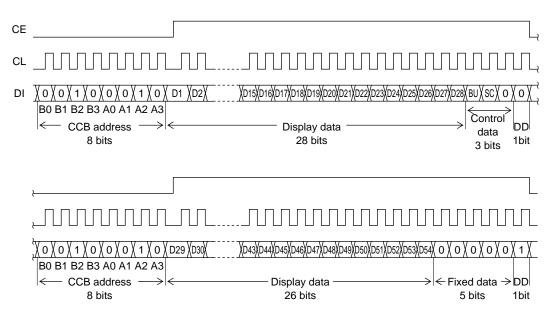
Serial Data Transfer Formats


(1) Static drive mode

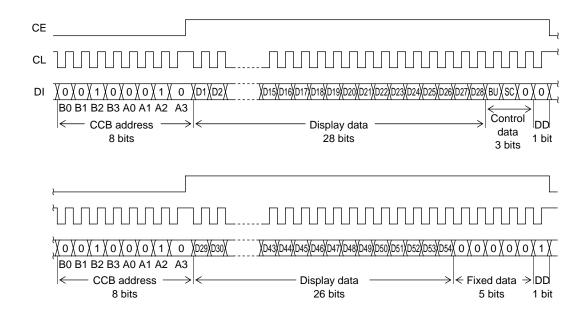
1. When CL is stopped at the low level

Note: DD is the direction data.

- CCB address "44H"
- D1 to D27 Display data
- P0 to P2 Segment output port/general-purpose output port switching control data
- DT Static drive or 1/2 duty drive switching control data
- FC0 to FC2 Common/segment output waveform frame frequency control data
- OC RC oscillator operating mode/external clock operating mode switching control data
- SC Segments on/off control data
- BU Normal mode/power-saving mode control data


Note: DD is the direction data.

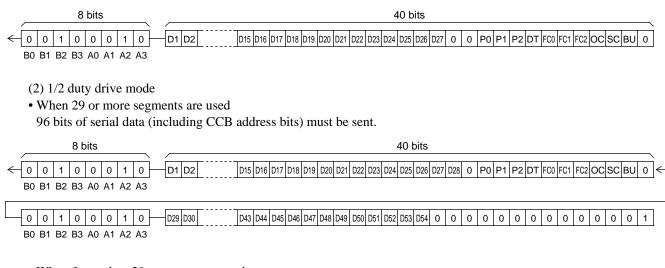
- CCB address "44H"
- D1 to D54 Display data
- P0 to P2 Segment output port/general-purpose output port switching control data
- \bullet DT $\hfill DT$ Static drive or 1/2 duty drive switching control data
- \bullet FC0 to FC2 \hdots Common/segment output waveform frame frequency control data
- OC RC oscillator operating mode/external clock operating mode switching control data
- SC Segments on/off control data
- BU Normal mode/power-saving mode control data


LC75841PE

Serial Data Transfer Formats (When in 842 mode data transfer)

- (1) 1/2 duty drive mode (When in 842 mode data transfer)
- 1. When CL is stopped at the low level

2. When CL is stopped at the high level


Note: DD is the direction data.

- CCB address "44H"
- D1 to D54 Display data
- BU Normal mode/power-saving mode control data
- SC Segments on/off control data

Serial Data Transfer Examples

(1) Static drive mode

The serial data shown in the figure below must be sent.

• When fewer than 29 segments are used The serial data shown below (the D1 to D28 display data and the control data) must always be sent.

8 bits	40 bits				
← 0 0 1 0 0 0 1 0 D1 D2	D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 0 P0 P1 P2 DT FC0 FC1 FC2 OC SC BU 0				
B0 B1 B2 B3 A0 A1 A2 A3					

Serial Data Transfer Examples (When in 842 mode data transfer)

(1) 1/2 duty drive mode (When in 842 mode data transfer)

• When 29 or more segments are used

80 bits of serial data (including CCB address bits) must be sent.

	8 bits			32 bits		
~	0 0 1 0 0 0 1 0 B0 B1 B2 B3 A0 A1 A2 A3	D1 D2	D15 D16 D17 D18	D19 D20 D21 D22 D23	D24 D25 D26 D27 D	
	0 0 1 0 0 0 1 0 B0 B1 B2 B3 A0 A1 A2 A3	D29 D30	D43 D44 D45 D46	D47 D48 D49 D50 D51	D52 D53 D54 O	0 0 0 0 1

• When fewer than 29 segments are used The serial data shown in the figure below (the D1 to D28 display data, and the control data) must be sent.

32 bits

Control Data Functions

 P0 to P2: Segment output port/general-purpose output port switching control data These control data bits switch the segment output port/general-purpose output port functions of the S1/P1 to S4/P4 output pins.

	Control data Output pin state					
P0	P1	P2	S1/P1	S2/P2	S3/P3	S4/P4
0	0	0	S1	S2	S3	S4
0	0	1	P1	S2	S3	S4
0	1	0	P1	P2	S3	S4
0	1	1	P1	P2	P3	S4
1	0	0	P1	P2	P3	P4

However, segment output port is forcibly selected when in 842 mode data transfer.

Note: Sn (n = 1 to 4): Segment output ports

Pn (n = 1 to 4): General-purpose output ports

Note that when the general-purpose output port function is selected, the correspondence between the output pins and the display data will be that shown in the table.

Output sis	Corresponding display data				
Output pin	Static drive mode	1/2 duty drive mode			
S1/P1	D1	D1			
S2/P2	D2	D3			
S3/P3	D3	D5			
S4/P4	D4	D7			

For example, if the general-purpose output port function is selected for the S4/P4 output pin in 1/2 duty drive mode, it will output a high level (V_{DD}) when display data D7 is 1, and a low level (V_{SS}) when D7 is 0.

2. DT: Static drive mode or 1/2 duty drive mode switching control data

This control data bit selects either static drive mode or 1/2 duty drive mode.

However, 1/2 duty drive mode is forcibly selected when in 842 mode data transfer.

DT	Duty drive mode	Output pin state (COM2)		
0	Static drive mode	V _{SS} level		
1	1/2 duty drive mode	COM2		

Note: COM2...Common output

3. FC0 to FC2: Common/segment output waveform frame frequency control data

These control data bits set the frame frequency of the common and segment output waveforms.

However, fo=fosc/384 is forcibly selected when in 842 mode data transfer.

Control data			
FC0	FC1	FC2	Frame frequency fo [Hz]
1	1	0	fosc/768, f _{CK} /768
1	1	1	fosc/576, f _{CK} /576
0	0	0	fosc/384, f _{CK} /384
0	0	1	fosc/288, f _{CK} /288
0	1	0	fosc/192, f _{CK} /192

LC75841PE

4. OC: RC oscillator operating mode/external clock operating mode switching control data This control data bit switches the OSC pin function (either RC oscillator operating mode or external clock operating mode).

OC	OSC pin function	
0	RC oscillator operating mode	
1	External clock operating mode	

Note: An external resistor, Rosc, and an external capacitor, Cosc, must be connected to the OSC pin if RC oscillator operating mode is selected.

5. SC: Segment on/off control data

This control data bit controls the on/off state of the segments.

SC	Display state	
0	On	
1	Off	

Note that when the segments are turned off by setting SC to 1, the segments are turned off by outputting segment off waveforms from the segment output pins.

6. BU: Normal mode/power-saving mode control data

This control data bit selects either normal mode or power-saving mode.

BU	Mode		
0	Normal mode		
1	Power-saving mode. $\left(\begin{array}{c} In \ RC \ oscillator \ operating \ mode \ (OC = 0), \ the \ OSC \ pin \ oscillator \ is \ stopped, \ and \ in \ external \ clock \ operating \ mode \ (OC = 1), \ acceptance \ of \ the \ external \ clock \ is \ stopped. \ In \ this \ mode \ the \ common \ and \ segment \ output \ pins \ go \ to \ the \ V_{SS} \ levels. \ However, \ S1/P1 \ to \ S4/P4 \ output \ pins \ that \ are \ set \ to \ be \ general-purpose \ output \ ports \ by \ the \ control \ data \ P0 \ to \ P2 \ can \ be \ used \ as \ general-purpose \ output \ ports. \ $		

COM1 D11 D12 D13 D14 D15 D16 D16 D17 D18 D19 D20

Display Data and Output Pin Correspondence

(1) Static drive mode

Output pin	COM1	Output pir		
S1/P1	D1	S11		
S2/P2	D2		S12	
S3/P3	D3		S13	
S4/P4	D4	S14		
S5	D5	S15		
S6	D6	S16		
S7	D7		S17	
S8	D8	S18		
S9	D9	S19		
S10	D10	S20		

Output pin	COM1
S21	D21
S22	D22
S23	D23
S24	D24
S25	D25
S26	D26
S27	D27
·	

Notes: This applies to the case where the S1/P1 to S4/P4 output pins are set to be segment output ports. The static drive mode cannot be selected when in 842 mode data transfer.

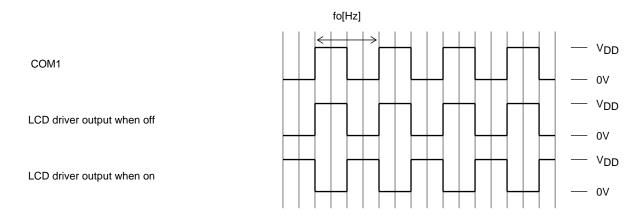
For example, the table below lists the output states for the S11 output pin.

Display data	Output siz (014) state	
D11	Output pin (S11) state	
0	The LCD segment corresponding to COM1 is off	
1	The LCD segment corresponding to COM1 is on	

(2) 1/2 duty drive mode

Output pin	COM1	COM2	
S1/P1	D1	D2	
S2/P2	D3	D4	
S3/P3	D5	D6	
S4/P4	D7	D8	
S5	D9	D10	
S6	D11	D12	
S7	D13	D14	
S8	D15	D16	
S9	D17	D18	
S10	D19 D20		

Output pin	COM1	COM2
S11	D21	D22
S12	D23	D24
S13	D25	D26
S14	D27	D28
S15	D29	D30
S16	D31	D32
S17	D33	D34
S18	D35	D36
S19	D37	D38
S20	D39	D40


Output pin	COM1	COM2	
S21	D41 D42		
S22	D43	D44	
S23	D45	D46	
S24	D47	D48	
S25	D49	D50	
S26	D51	D52	
S27	D53 D54		

Note: This applies to the case where the S1/P1 to S4/P4 output pins are set to be segment output ports.

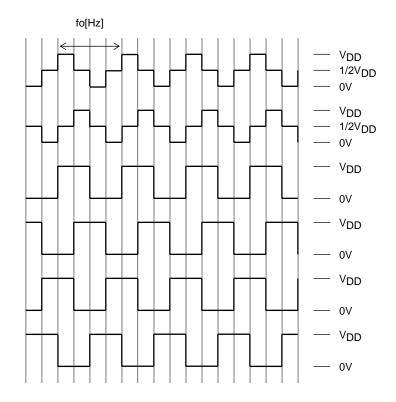
For example, the table below lists the output states for the S11 output pin.

Display data		Output pip (\$11) state	
D21	D22	Output pin (S11) state	
0	0	The LCD segments corresponding to COM1 and COM2 are off.	
0	1	The LCD segment corresponding to COM2 is on.	
1	0	The LCD segment corresponding to COM1 is on.	
1	1	The LCD segments corresponding to COM1 and COM2 are on.	

Output Waveforms (Static drive mode)

Output Waveforms (1/2 duty, 1/2 bias drive mode)

COM1

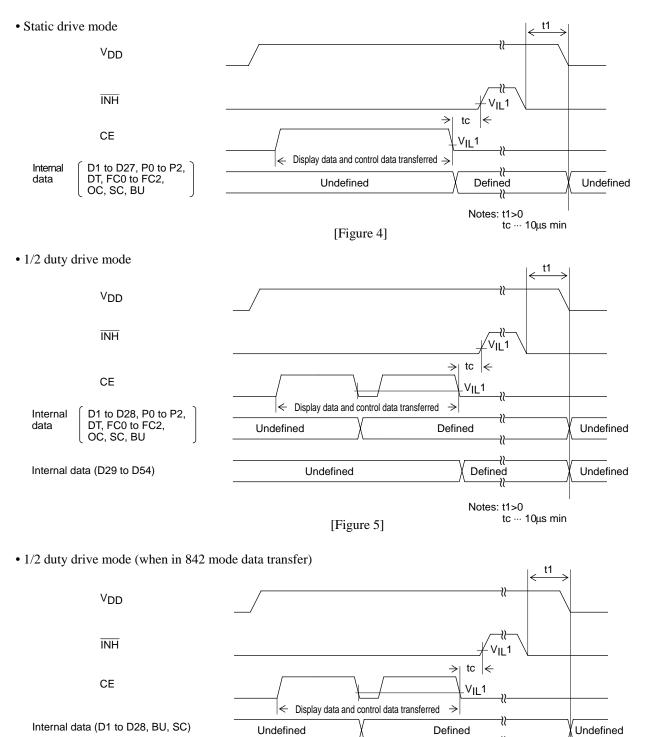

COM2

LCD driver output when all LCD segments corresponding to COM1 and COM2 are off.

LCD driver output when only LCD segments corresponding to COM1 are on.

LCD driver output when only LCD segments corresponding to COM2 are on.

LCD driver output when all LCD segments corresponding to COM1 and COM2 are on.



	Control data		
FC0	FC1	FC2	Frame frequency fo [Hz]
1	1	0	fosc/768, f _{CK} /768
1	1	1	fosc/576, f _{CK} /576
0	0	0	fosc/384, f _{CK} /384
0	0	1	fosc/288, f _{CK} /288
0	1	0	fosc/192, f _{CK} /192

Display Control and the INH Pin

Internal data (D29 to D54)

Since the IC's internal data (the display data D1 to D27 and the control data when in static drive mode, and the display data D1 to D54 and the control data when in 1/2 duty drive mode) is undefined when power is first applied, applications should set the \overline{INH} pin low at the same time as power is applied to turn off the display (setting S1/P1 to S4/P4 and S5 to S27, COM1, and COM2 to the V_{SS} level) and during this period send serial data from the controller. The controller should then set the \overline{INH} pin high after the data transfer has completed. This procedure prevents unnecessary display at power on. (See figure 4, figure 5 and figure 6)

Undefined

[Figure 6]

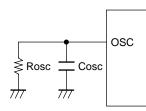
Defined

Notes: t1>0

tc ··· 10µs min

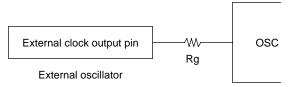
No.A1578-15/18

Undefined


Notes on Controller Transfer of Display Data

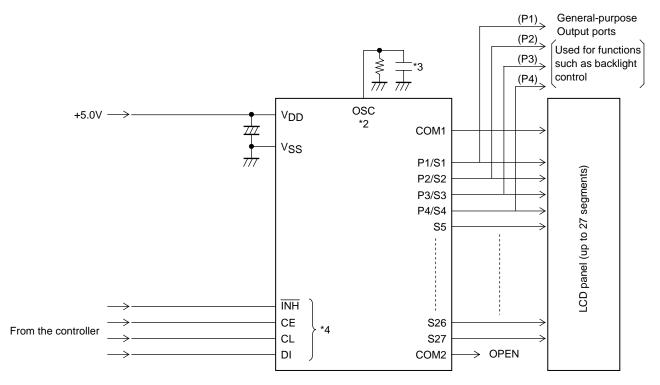
Since the LC75841PE transfer the display data (D1 to D54) in two separate transfer operations in 1/2 duty drive mode, we recommend that applications make a point of completing all of the display data transfer within a period of less than 30ms to prevent observable degradation of display quality.

OSC Pin Peripheral Circuit

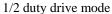

(1) RC oscillator operating mode (control data OC = 0)

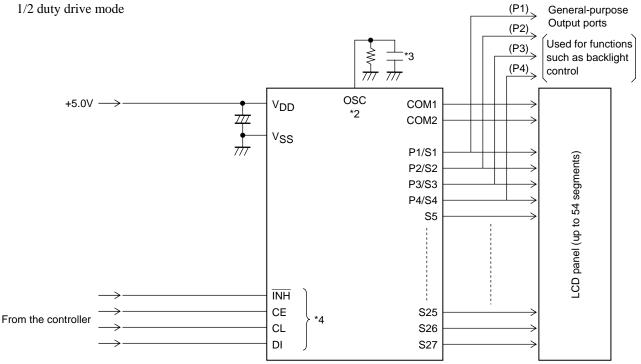
An external resistor, Rosc, and an external capacitor, Cosc, must be connected between the OSC pin and GND if RC oscillator operating mode is selected.

(2) External clock operating mode (control data OC = 1)


When the external clock operating mode is selected, insert a current protection resistor Rg (4.7 to $47k\Omega$) between the OSC pin and external clock output pin (external oscillator). Determine the value of the resistance according to the allowable current value at the external clock output pin. Also make sure that the waveform of the external clock is not heavily distorted.

Note: Allowable current value at external clock output pin > $\frac{V_{DD}}{Rg}$


Sample Application Circuit 1


Static drive mode

- *2: In RC oscillator operating mode, an external resistor, Rosc, and an external capacitor, Cosc, must be connected between the OSC pin and ground. If external clock operating mode is selected, a current protection resistor, Rg (4.7 to 47kΩ), must be inserted between the external clock output pin (on the external oscillator) and the OSC pin. (See the "OSC Pin Peripheral Circuit" section.)
- *3: When a capacitor except the recommended external capacitance (Cosc = 1000pF) is connected to the OSC pin, it should be in the range 220 to 2200pF.
- *4: The pins to be connected to the controller (CE, CL, DI, INH) can handle 3.3V or 5.0V.

Sample Application Circuit 2

- *2: In RC oscillator operating mode, an external resistor, Rosc, and an external capacitor, Cosc, must be connected between the OSC pin and ground. If external clock operating mode is selected, a current protection resistor, Rg (4.7 to $47k\Omega$), must be inserted between the external clock output pin (on the external oscillator) and the OSC pin. (See the "OSC Pin Peripheral Circuit" section.)
- *3: When a capacitor except the recommended external capacitance (Cosc = 1000pF) is connected to the OSC pin, it should be in the range 220 to 2200pF.
- *4: The pins to be connected to the controller (CE, CL, DI, INH) can handle 3.3V or 5.0V.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.