

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

March 2013

FSUSB46 — Hi-Speed USB2.0 (480Mbps) DPST Switch with Dedicated Charger Port Detection

Features

- Low On Capacitance: 7.0pF Typical
- Low On Resistance: 3.90 Typical
- Low Power Consumption: 1µA Maximum
 - 15µA Maximum I_{CCT} over an Expanded Voltage Range (V_{IN} =1.8V, V_{CC} =4.3V)
- Wide -3db Bandwidth: > 720MHz
- Packaged in Pb-free, 8-Lead MicroPak™ (1.6mm wide), US8 (3.1mm wide), and UMLP (1.4x1.4mm)
- 8kV ESD Rating, >16kV Power/GND ESD Rating
- Power-Off Protection on All Ports When V_{CC}=0V - D+/D- Pins Tolerate up to 5.25V

Applications

- Cell phone, PDA, Digital Camera, and Notebook
- LCD Monitor, TV, and Set-Top Box

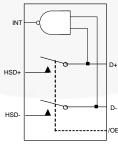
IMPORTANT NOTE:

For additional performance information, please contact analogswitch@fairchildsemi.com.

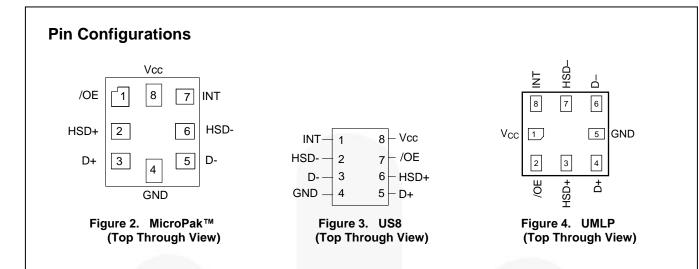
Description

The FSUSB46 is a bi-directional, low-power, Hi-Speed. USB2.0 switch. Configured as a double-pole, singlethrow switch (DPST) switch, it is optimized for switching a Hi-Speed (480Mbps) source.

The FSUSB46 is compatible with the requirements of USB2.0 and features an extremely low on capacitance (C_{ON}) of 3.9pF. The wide bandwidth of this device (720MHz) exceeds the bandwidth needed to pass the third harmonic, resulting in signals with minimum edge and phase distortion. Superior channel-to-channel crosstalk also minimizes interference.


The FSUSB46 contains special circuitry on the switch I/O pins for applications where the V_{CC} supply is powered-off (V_{CC}=0), which allows the device to withstand an over-voltage condition. This device is designed to minimize current consumption even when the control voltage applied to the /OE pin is lower than the supply voltage (V_{CC}). This feature is especially valuable to ultra-portable applications, such as cell phones, allowing for direct interface with the generalpurpose I/Os of the baseband processor. An additional feature is the detection of the 1-1 (high/high) state on D+/D- to signal an interrupt (INT) to the processor when entering a dedicated charging port mode of operation.

Ordering In	Ordering Information							
Part Number	Operating Temperature Range	Package	Eco Status					
FSUSB46L8X	-40 to +85°C	8-Lead MicroPak™ 1.6mm Wide	RoHS					
FSUSB46K8X	-40 to +85°C	8-Lead US8, JEDEC MO187, Variation CA 3.1mm	Green					
FSUSB46UMX	-40 to +85°C	8-Lead Ultrathin Molded Leadless Package (UMLP), 1.2 x 1.4mm	Green					


C

W For Fairchild's definition of Eco Status, please visit: <u>http://www.fairchildsemi.com/company/green/rohs_green.html</u>.

MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

Pin Definitions

Pin Name	Description
INT	Interrupt Signaling Output Pin
/OE	Switch Enable
D+, D-	USB Data Bus Connector
HSD+, HSD-	USB Source Inputs
GND	Ground
V _{cc}	Supply Voltage

Truth Table

Dat	a Path	Charger D	etect Path
/OE Switch Connection		D+ D-	INT Output
HIGH	D+, D- = Open	1-1	LOW
LOW	D+, D- = HSD+, HSD-	0X, X0	HIGH

FSUSB46 — Hi-Speed USB2.0 (480Mbps) DPST Switch with Dedicated Charger Port Detection

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit	
V _{CC}	Supply Voltage		-0.5	+5.5	V
V _{CNTRL}	DC Input Voltage (S) ⁽¹⁾		-0.5	V _{CC}	V
V _{SW}	DC Switch I/O Voltage ⁽¹⁾		-0.50	5.25	V
I _{IK}	DC Input Diode Current		-50		mA
I _{OUT}	DC Output Current			50	mA
T _{STG}	Storage Temperature		-65	+150	°C
		All Pins		7	
ESD	Human Body Model, JEDEC: JESD22-A114	I/O to GND		8	kV
230		Power to GND		16	κV
	Charged Device Model, JEDEC: JESD22-C10	01		2	

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{cc}	Supply Voltage	3.0	4.3	V
V _{CNTRL}	Control Input Voltage (/OE) ⁽²⁾	0	V _{cc}	V
V _{sw}	Switch I/O Voltage	-0.5	V _{cc}	V
T _A	Operating Temperature	-40	+85	°C

Note:

2. The control input must be held HIGH or LOW; it must not float.

DC Electrical Characteristics

All typical value are at 25°C, V_{CC} =3.3V unless otherwise specified.

Cumula al	Demonstern	Canalitiana		T _A =- 40°C to +85°C			11
Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Units
V _{IK}	Clamp Diode Voltage	I _{IN} =-18mA	3.0			-1.2	V
V _{IH}	Input Voltage High		3.0 to 3.6	1.3			V
VIH	input voltage riigh		4.3	1.7			V
V	Input Voltage Low		3.0 to 3.6			0.5	V
V _{IL}	Input Voltage Low		4.3			0.7	V
M		1	3.0 to 3.6	2.4			
V _{OH}	Output Voltage High	I _{OH} =-2mA	4.3	2.4			V
	V _{OL} Output Voltage Low	ut Voltage Low I _{OL} =2mA	3.0 to 3.6			0.25	V
V _{OL}			4.3			0.25	
I _{IN}	Control Input Leakage	V_{SW} =0 to V_{CC}	4.3	-1		1	μA
I _{oz}	Off State Leakage	HSD+ or HSD-=0V, 3.6V or floating	4.3	-2		2	μA
I _{OFF}	Power-Off Leakage Current (All I/O Ports)	V_{SW} =0V to 4.3V, V_{CC} =0V Figure 6	0	-2		2	μA
R _{ON}	HS Switch On Resistance ⁽³⁾	V _{SW} =0.4V, I _{ON} =-8mA Figure 5	3.0		3.9	6.5	Ω
ΔR_{ON}	HS Delta R _{ON} ⁽⁴⁾	V _{SW} =0.4V, I _{ON} =-8mA	3.0		0.65		Ω
I _{cc}	Quiescent Supply Current	V_{CNTRL} =0 or V_{CC} , I_{OUT} =0	4.3			1	μA
1	Increase in I _{cc} Current Per	V _{CNTRL} =2.6V V _{CC} =4.3V	4.3			10	μA
I _{CCT}	Control Voltage and V _{CC}	V _{CNTRL} =1.8V V _{CC} =4.3V	4.3			20	μA

Notes:

3. Measured by the voltage drop between HSDn and Dn pins at the indicated current through the switch.

On resistance is determined by the lower of the voltage on the two (HSDn or Dn ports).

4. Guaranteed by characterization.

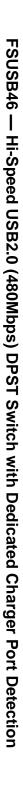
	Devenuetor	Conditions		T _A =- 40°C to +85°C			11.24
Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Units
t _{on}	Turn-On Time /OE to Output	R_L =50 Ω , C_L =5pF V _{SW} =0.8V Figure 7, Figure 8	3.0 to 3.6		13	30	ns
t _{OFF}	Turn-Off Time /OE to Output	R_L =50 Ω , C_L =5pF V _{SW=} 0.8V Figure 7, Figure 8	3.0 to 3.6		12	25	ns
t _{PD}	Propagation Delay ⁽⁵⁾	$C_L=5 \text{ pF}, R_L=50\Omega$ Figure 7, Figure 9	3.3		0.25		ns
t _{BBM}	Break-Before-Make	R_L =50 Ω , C_L =5pF V_{SW1} = V_{SW2} =0.8V Figure 13	3.0 to 3.6	2.0		6.5	ns
t _{PLH/HL}	INT Propagation Delay ⁽⁵⁾	R _L =500Ω, C _L =5pF	3.0 to 3.6		10		ns
O _{IRR}	Off Isolation	R _L =50Ω, f=240MHz Figure 15	3.0 to 3.6		-30		dB
Xtalk	Non-Adjacent Channel Crosstalk	R _L =50Ω, f=240MHz Figure 16	3.0 to 3.6		-45		dB
BW	-3db Bandwidth	$R_L=50\Omega$, $C_L=0pF$ Figure 14	- 3.0 to 3.6		720		MHz
DVV		$R_L=50\Omega$, $C_L=5pF$ Figure 14	3.0 10 3.0		550		MHz

Note:

5. Guaranteed by characterization.

AC Electrical Characteristics

USB Hi-Speed-Related AC Electrical Characteristics


Symbol	Deremeter	Conditions	V _{cc} (V)	T _A =- 40°C to +85°C			Linite
Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
t _{SK(P)}	Skew of Opposite Transitions of the Same Output ⁽⁶⁾	$C_L=5pF, R_L=50\Omega$ Figure 10	3.0 to 3.6		20		ps
tj	Total Jitter ⁽⁶⁾	R _L =50Ω, C _L =5pf, t _R =t _F =500ps (10-90%) at 480Mbps (PRBS=2 ¹⁵ – 1)	3.0 to 3.6		200		ps

Note:

6. Guaranteed by characterization.

Capacitance

Symbol	Deremeter	Conditions	T _A =- 40°C to +85°C			L Inite
	Parameter	Conditions	Min.	Тур.	Max.	Units
C _{IN}	Control Pin Input Capacitance	V _{CC} =0V		1.5		pF
C _{OUT}	INT Pin Output Capacitance	V _{CC} =0V		2.5		pF
C _{ON}	D+, D- On Capacitance	V _{CC} =3.3V, f=1MHz Figure 12		7.0	7.9	pF
C_{OFF}	D+, D- Off Capacitance	V _{CC} =3.3V Figure 11		2.0		pF

D+, D-

 $t_{FALL} = 2.5 ns$

10%

90%

 $t_{FALL} = 500 ps$

10%

/OE

 $V_{/O}$ =0 or V_{CC}

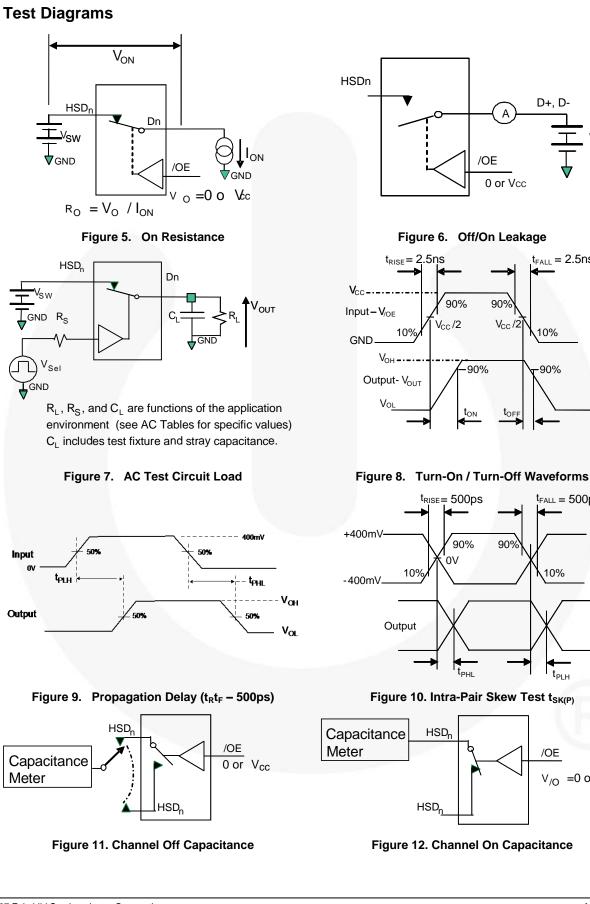
Vsw

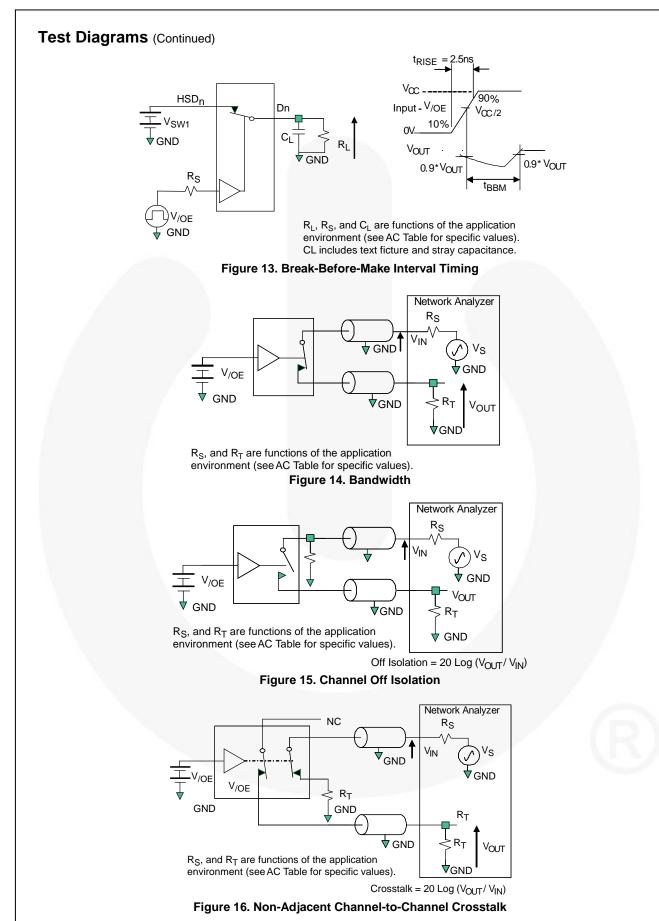
Α

0 or Vcc

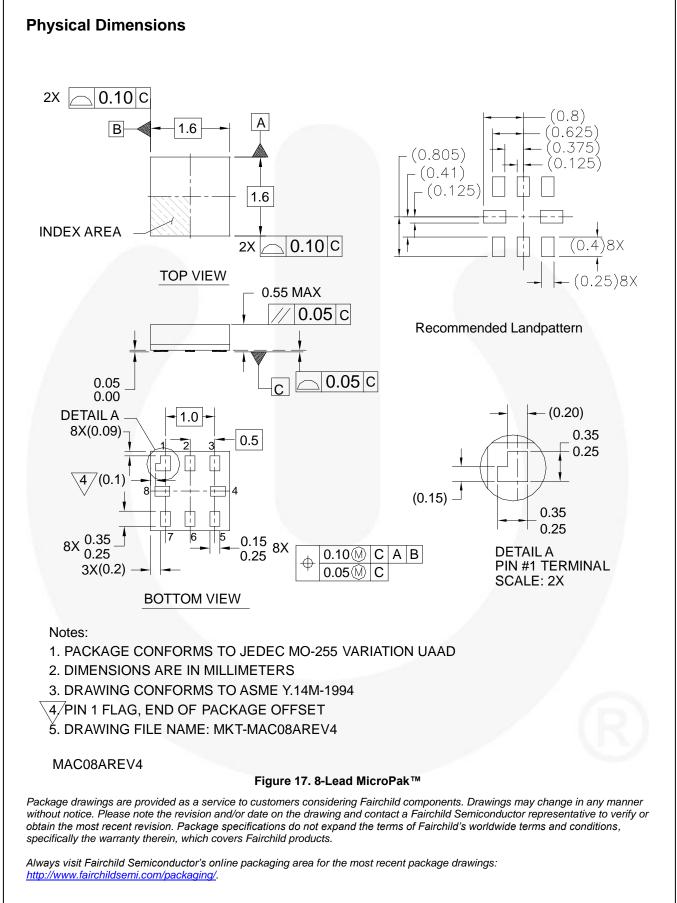
909

90%


ton

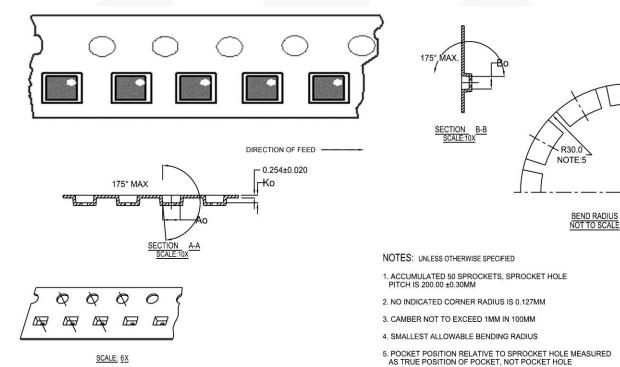

Vcc/2

to

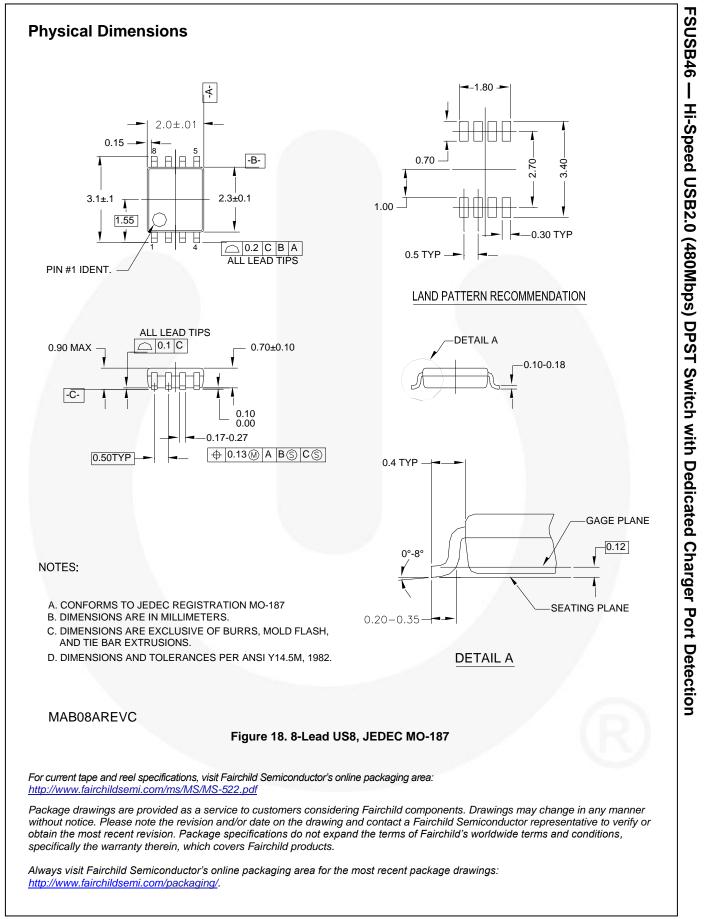

90%

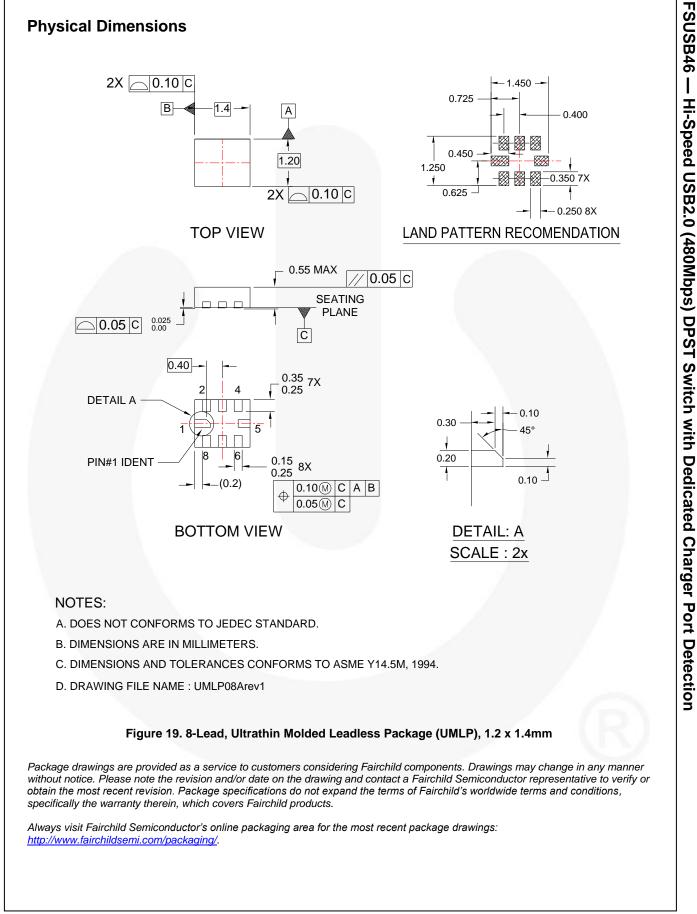
/OE

FSUSB46 — Hi-Speed USB2.0 (480Mbps) DPST Switch with Dedicated Charger Port Detection



Tape and Reel Specifications							
Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Tape Status			
	Leader (Start End)	125 (Typical)	Empty	Sealed			
L6X, L8X, L10X	Carrier	5000	Filled	Sealed			
	Trailer (Hub End)	75 (Typical)	Empty	Sealed			


Standard Tape and Reel Specifications


Standard tape and reel specifications for MicroPak are available at Fairchild Semiconductor's website: <u>http://www.fairchildsemi.com/products/logic/pdf/micropak_tr.pdf</u>


FSUSB46L8X_F130 Tape and Reel Specifications

10	30056	2.30 ± 0.1mm	1.78 ± 0.1mm	0.68 ± 0.1mm
8	30038	1.78 ± 0.1mm	1.78 ± 0.1mm	0.68 ± 0.1mm
6	30033	1.60 ± 0.1mm	1.15 ± 0.1mm	0.70 ± 0.1mm

Definition of Terms Datasheet Identification

Advance Information

No Identification Needed

Preliminary

Ohsolete

Product Status

First Production

Full Production

Not In Production

Formative / In Design

Rev. 144

at any time without notice to improve the design

The datasheet is for reference information only

any manner without notice

Definition Datasheet contains the design specifications for product development. Specifications may change in

Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild

Semiconductor reserves the right to make changes at any time without notice to improve design Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes

Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC