

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

April 2013

FAN7527B Power Factor Correction Controller

Features

- Internal Startup Timer
- Internal R/C Filter Eliminates the Need for External R/C Filter
- Precise Adjustable Output Over-Voltage Protection
- Zero Current Detector
- One Quadrant Multiplier
- Trimmed 1.5% Internal Band Gap Reference
- Under-Voltage Lockout with 3 V of Hysteresis
- Totem-Pole Output with High-State Clamp
- Low Startup and Operating Current
- 8-Pin SOP or 8-Pin DIP

Applications

- Electronic Ballast
- SMPS

Description

The FAN7527B provides simple and high-performance active Power Factor Correction (PFC). The FAN7527B is optimized for electronic ballasts and low-power, high-density power supplies that require minimum board size, reduced external components, and low power dissipation. Because the R/C filter is included in the current-sense block, an external R/C filter is not necessary. Special circuitry prevents no-load runaway conditions. Regardless of the supply voltage, the output drive clamping circuit limits the overshoot of the power MOSFET gate drive, which improves system reliability.

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method	
FAN7527BMX	27BMX -25 to +125°C 8-Lead, Small Outline Package (SOP)		Tape and Reel	
FAN7527BN	-25 to +125°C	8-Lead, Dual Inline Package (DIP)	Tube	

Block Diagram

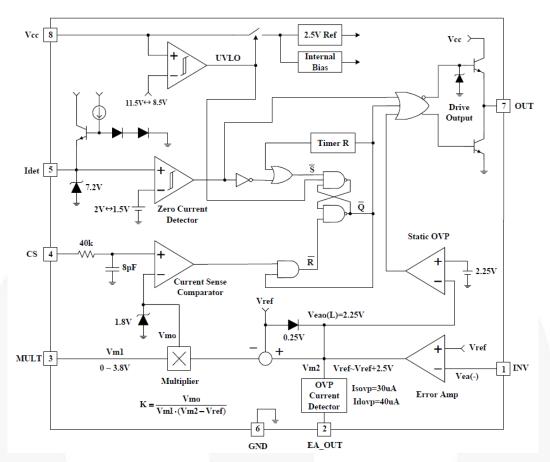


Figure 1. Block Diagram

Pin Configuration

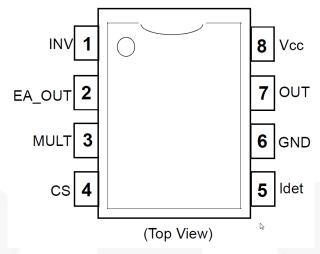


Figure 2. Pin Configuration

Pin Definitions

Pin#	Name	Description
1	INV	Inverting input of the error amplifier. The output of the boost converter should be resistively divided to 2.5 V and connected to this pin.
2	EA_OUT	Output of the error amplifier. Feedback compensation network is placed between this pin and the INV pin.
3	MULT	Input to the multiplier stage. The full-wave rectified AC voltage is divided to less than 2 V and is connected to this pin.
4	CS	Input of the PWM comparator. The MOSFET current is sensed by a resistor and the resulting voltage is applied to this pin. An internal R/C filter is included to reject high-frequency noise.
5	ldet	Zero Current Detection (ZCD) input.
6	GND	Ground
7	OUT	Gate driver output. Push-pull output stage is able to drive the power MOSFET with a peak current of 500 mA.
8	V _{CC}	Supply voltage of driver and control circuits.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Max.	Unit
V _{CC}	Supply Voltage			30	V
I _{OH} , I _{OL}	Peak Drive Output Current			±500	mA
I _{CLAMP}	Driver Output Clamping Diodes Vo > Vc	_C or V _O <-0.3 V		±10	mA
I _{DET}	Detector Clamping Diodes			±10	mA
V _{IN}	Error Amplifier Multiplier and Comparator Input Voltages		-0.3	6.0	V
TJ	Operation Junction Temperature			+150	°C
T _{OPR}	Operating Temperature Range		-25	+125	°C
T _{STG}	Storage Temperature Range		-65	+150	°C
ь /	Power Dissipation	8-SOP		0.8	W
P _D		8-DIP		1.1	W
0	Thermal Resistance Junction-Ambient	8-SOP		150	°C/W
Θ_{JA}		8-DIP		110	°C/W

Temperature Characteristics

 $-25^{\circ}\text{C} \le \text{T}_{\text{A}} \le 125^{\circ}\text{C}$.

Symbol	Parameter		Тур.	Max.	Unit
ΔV_{REF}	Temperature Stability Reference Voltage (V _{REF})		20		mV
ΔΚ/ΔΤ	Temperature Stability for Multiplier Gain (K)		-0.2		%/°C

Electrical Characteristics

 V_{CC} = 14 V, -25°C ≤ T_A ≤ 125°C, unless otherwise stated.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Under-Volta	ge Lockout		•		1	
V _{th(st)}	Start Threshold Voltage	V _{CC} Increasing	10.5	11.5	12.5	V
H _{Y(st)}	UVLO Hysteresis		2	3	4	V
Supply Curr	ent Section		•		-	
I _{ST}	Startup Supply Current	$V_{CC} = V_{th(st)}$ -0.2 V	10	60	100	μA
I _{cc}	Operating Supply Current	Output Not Switching		3	6	mA
I _{CC(OVP)}	Operating Current at OVP	V _{INV} = 3 V		1.7	4.0	mA
I _{DCC}	Dynamic Operating Supply Current	50 kHz, C _I = 1 nF	-/	4	8	mA
Error Ampli	fier Section					
V	Note we Feedback to well the selection	I _{REF} = 0 mA, T _A = 25°C	2.465	2.500	2.535	
V_{REF}	Voltage Feedback Input Threshold	25°C ≤ T _A ≤ 125°C	2.440	2.500	2.560	V
ΔV_{FEF1}	Line Regulation	14 V ≤ V _{CC} ≤ 25 V		0.1	10.0	mV
ΔV_{FEF3}	Temperature Stability of V _{REF} ⁽¹⁾	-25°C ≤ T _A ≤ 125°C		20		mV
I _{b(ea)}	Input Bias Current		-0.5	Δ,,	0.5	μA
I _{SOURCE}	Output Source Current	V _{M2} = 4 V	-2	-4		mA
I _{SINK}	Output Sink Current	V _{M2} = 4 V	2	4		mA
V _{EAO(H)}	Output Upper Clamp Voltage ⁽¹⁾	I _{SOURCE} = 0.1 mA		6		V
V _{EAO(L)}	Output Lower Clamp Voltage ⁽¹⁾	I _{SINK} = 0.1 mA		2.25		V
G _V	Large Signal Open-Loop Gain ⁽¹⁾	y y	60	80		dB
PSRR	Power Supply Rejection Ratio ⁽¹⁾	14 V ≤ V _{CC} ≤ 25 V	60	80		dB
GBW	Unity Gain Bandwidth ⁽¹⁾			1		MHZ
SR	Slew Rate ⁽¹⁾			0.6		V/µs
Multiplier Se	ection				7	
I _{b(m)}	Input Bias Current (Pin 3)		-0.5		0.5	μΑ
ΔV_{M1}	M1 Input Voltage Range (Pin 3)				3.8	V
ΔV_{M2}	M2 Input Voltage Range (Pin 2)		V_{REF}		V _{REF} +2.5	V
K	Multiplier Gain ⁽¹⁾	$V_{M1} = 1 \text{ V}, V_{M2} = 3.5 \text{ V}$	0.36	0.44	0.52	1 / V
$V_{OMAX(m)}$	Maximum Multiplier Output Voltage	V _{INV} =0 V, V _{M1} = 4 V	1.65	1.80	1.95	V
ΔΚ/ΔΤ	Temperature Stability of K ⁽¹⁾	-25 ≤ T _A ≤ 125°C		-0.2	V	%/°C
Current Sen	se Section					
$V_{IO(CS)}$	Input Offset Voltage ⁽¹⁾	$V_{M1} = 0 \text{ V}, V_{M2} = 2.2 \text{ V}$	-10	3	10	mV
I _{b(CS)}	Input Bias Current	0 V ≤ V _{CS} ≤ 1.7 V	-1.0	-0.1	1.0	μA
t _{D(CS)}	Current Sense Delay to Output ⁽¹⁾			200	500	ns

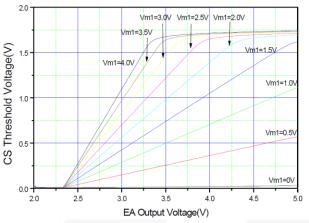
Continued on the following page...

Electrical Characteristics (Continued)

 V_{CC} = 14 V, -25°C ≤ T_A ≤ 125°C, unless otherwise stated.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Zero Curren	t Detect Section		•	•	•	
V _{TH(DET)}	Input Voltage Threshold	V _{DET} Increasing	1.7	2.0	2.3	V
H _{Y(DET)}	Detect Hysteresis		0.2	0.5	0.8	V
$V_{CLAMP(I)}$	Input Low Clamp Voltage	I _{DET} = -100 μA	0.45	0.75	1.00	V
V _{CLAMP(H)}	Input High Clamp Voltage	I _{DET} = 3 mA	6.5	7.2	7.9	V
I _{b(DET)}	Input Bias Current	1 V ≤ V _{DET} ≤ 5 V	-1.0	-0.1	1.0	μΑ
I _{CLAMP(D)}	Input High/Low Clamp Diode Current ⁽¹⁾				±3	mA
Output Sect	tion					
V _{OH}	Output Voltage High	I _O = -10 mA	10.5	11.0		V
V _{OL}	Output Voltage Low	I _O = 10 mA		0.8	1.0	V
t _R	Rising Time ⁽¹⁾	C _L = 1 nF		130	200	ns
t _F	Falling Time ⁽¹⁾	C _L = 1 nF		50	120	ns
V _{OMAX(O)}	Maximum Output Voltage	$V_{CC} = 20 \text{ V}, I_{O} = 100 \mu\text{A}$	12	14	16	V
V _{OMIN(O)}	Output Voltage with UVLO Activated	$V_{CC} = 5 \text{ V}, I_{O} = 100 \mu\text{A}$		\	1	V
Restart Time	er Section					
t _{D(RST)}	Restart Time Delay	$V_{M1} = 1 \text{ V}, V_{M2} = 3.5 \text{ V}$		150		μs
Over-Voltag	e Protection Section					
I _{SOVP}	Soft OVP Detecting Current		25	30	35	μA
I _{DOVP}	Dynamic OVP Detecting Current		35	40	45	μΑ
V _{OVP}	Static OVP Threshold Voltage	$V_{INV} = 2.7 \text{ V}$	2.10	2.25	2.40	V

Note:


1. These parameters, although guaranteed, are not 100% tested in production.

Multiplier Gain:

$$K = \frac{Pin4_Threshold}{V_{M1} \times \left(V_{M2} - V_{REF}\right)}$$

where $V_{M1} = V_{PIN3}$, $V_{M2} = V_{PIN2}$

Typical Performance Characteristics

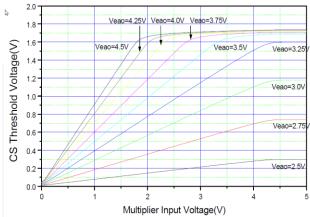


Figure 3. Error Amplifier Output Voltage vs. Current Sensing Threshold

0.015

0.012

(V) 0.009

0.006

(V) 0.006

2.7

2.6

(V) 0.009

2.5

2.7

Figure 4. Multiplier Input Voltage vs. Current Sensing Threshold

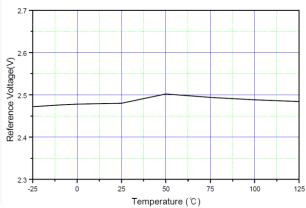


Figure 5. Supply Current vs. Supply Voltage

Supply Voltage(V)

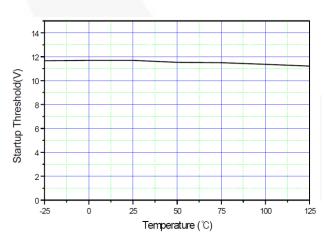
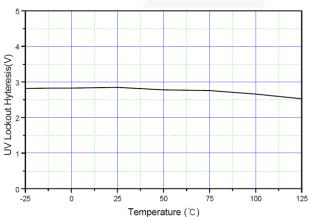


Figure 6. Reference Voltage vs. Temperature



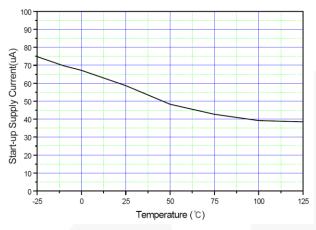

Figure 7. Startup Threshold vs. Temperature

Figure 8. UVLO Hysteresis vs. Temperature

0.003

0.000

Typical Performance Characteristics (Continued)

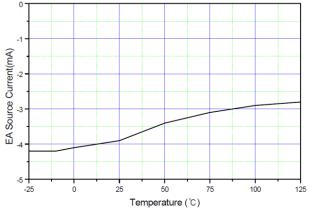
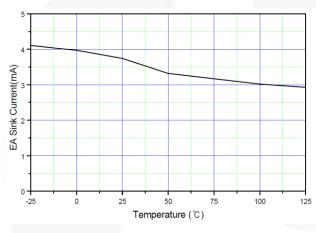



Figure 9. Startup Supply Current vs. Temperature

Figure 10. Error Amplifier Source Current

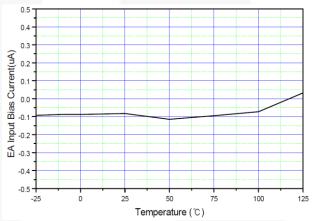
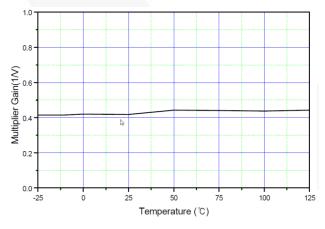



Figure 11. Error Amplifier Sink Current vs. Temperature

Figure 12. Error Amplifier Input Bias Current vs. Temperature

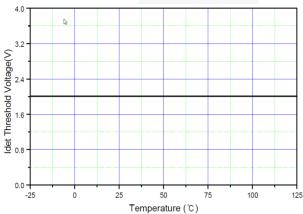
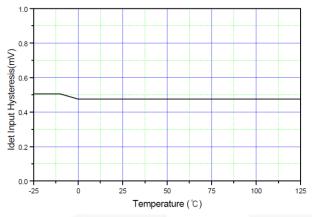



Figure 13. Multiplier Gain vs. Temperature

Figure 14. I_{DET} Threshold Voltage vs. Threshold

Typical Performance Characteristics (Continued)

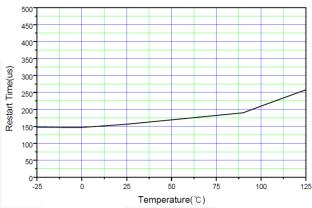
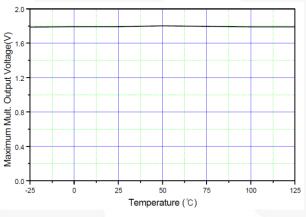



Figure 15. IDET Input Hysteresis vs. Temperature

Figure 16. Restart Time vs. Temperature

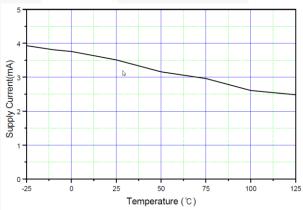
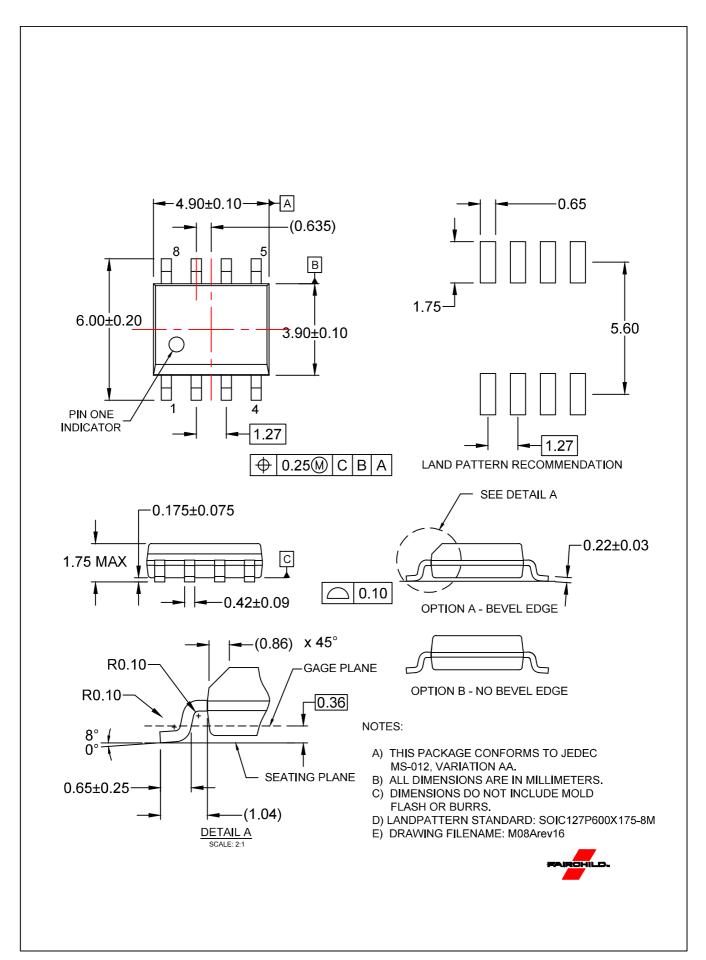
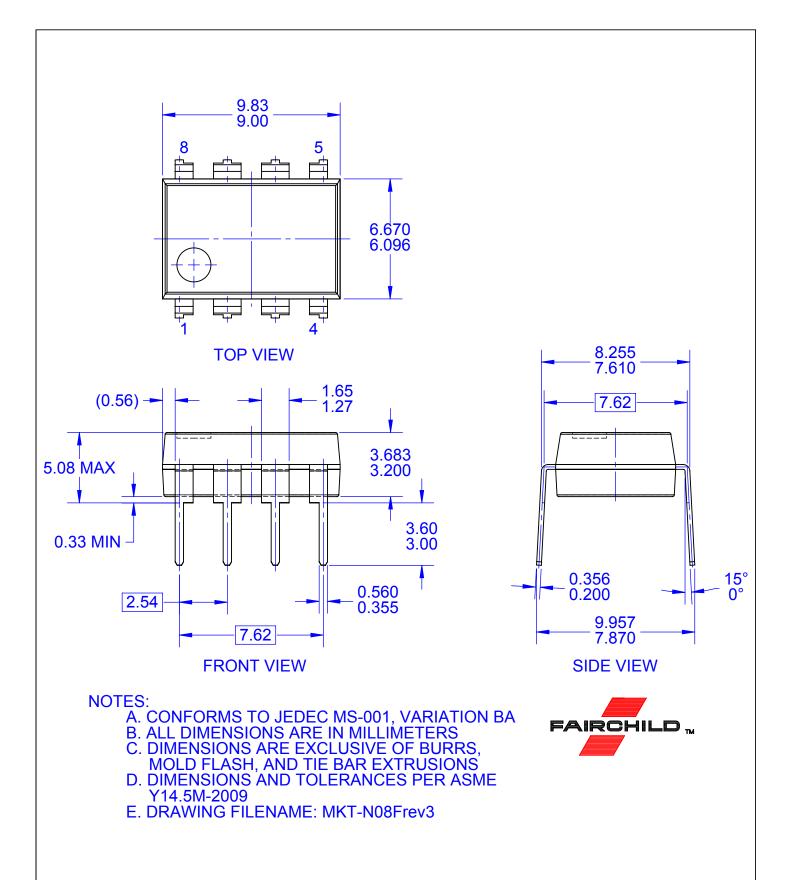




Figure 17. Maximum Multiplier Output Voltage vs. Temperature

Figure 18. Supply Current vs. Temperature

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative