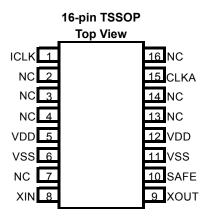

FailSafe™ PacketClock™ Global Communications Clock Generator

Features

- Fully integrated phase-locked loop (PLL)
- FailSafe[™] output
- PLL driven by a crystal oscillator that is phase aligned with external reference
- 100-MHz output from 10-MHz input
- · Low-jitter, high-accuracy outputs
- 3.3V ± 5% operation
- 16-lead TSSOP


Benefits

- Integrated high-performance PLL tailored for telecommunications frequency synthesis eliminates the need for external loop filter components
- When reference is off, DCXO maintains clock outputs and SAFE pin indicates FailSafe conditions
- DCXO maintains continuous operation should the input reference clock fail
- · Glitch-free transition simplifies system design
- · Works with commonly available, low-cost 10-MHz crystal
- · Zero-ppm error for all output frequencies
- · Compatible across industry standard design platforms
- Industry standard package with 6.4 × 5.0 mm² footprint and a height profile of just 1.1 mm

Pin Configuration

Pin Description

Pin Number	Pin Name	Pin Description
1	ICLK	Reference Input Clock; 10 MHz.
2	NC	No Connect.
3	NC	No Connect.
4	NC	No Connect.
5	VDD	Voltage Supply; 3.3V.
6	VSS	Ground.
7	NC	No Connect
8	XIN	Pullable Crystal Input; 10 MHz.
9	XOUT	Pullable Crystal Output; 10 MHz.
10	SAFE	High = reference ICLK within range, Low = reference ICLK out of range.
11	VSS	Ground.
12	VDD	Voltage Supply; 3.3V.
13	NC	No Connect.
14	NC	No Connect.
15	CLKA	Clock Output. 100 MHz
16	NC	No Connect.

Selector Guide

Part Number	Input Frequency Range	Outputs	Output Frequencies
	Reference Input Clock: 10 MHz Crystal: 10-MHz pullable Crystal per Cypress Specification	1	100 MHz

Description

CY26049-22 is a FailSafe™ frequency synthesizer with a reference clock input and 100-MHz output. The device provides an optimum solution for applications where continuous operation is required in the event of a primary clock failure. The continuous, glitch-free operation is achieved by using a DCXO, which serves as a primary clock source. The FailSafe control circuit synchronizes the DCXO oscillator with the reference as long as the reference is within the pull range of the crystal.

In the event of a reference clock failure the DCXO maintains the last frequency of the reference clock. The unique feature of the CY26049-22 is that the DCXO is, in fact, the primary clocking source. When the reference clock is restored, the DCXO automatically resynchronizes to the reference. The status of the reference clock input, as detected by the CY26049-22, is reported by the SAFE pin.

Absolute Maximum Conditions

Supply Voltage (V _{DD})	0.5 to +7.0V
DC Input Voltage	. –0.5V to V _{DD} + 0.5
Storage Temperature (Non-Condensing)	55°C to +125°C
Junction Temperature	–40°C to +125°C

Data Retention @ Tj = 125°C	>10 Years
Package Power Dissipation	350 mW
ESD (Human Body Model) MIL-STD-883	2000V
(Above which the useful life may be impaired. For lines, not tested.)	user guide-

Recommended Pullable Crystal Specifications

Parameter	Name	Comments	Min.	Тур.	Max.	Unit
F _{NOM}	Nominal crystal frequency	Parallel resonance, fundamental mode, AT cut	_	10	_	MHz
C _{LNOM}	Nominal load capacitance		_	14	-	pF
R ₁	Equivalent series resistance (ESR)	Fundamental mode	-	_	25	Ω
R ₃ /R ₁	Ratio of third overtone mode ESR to fundamental mode ESR	Ratio used because typical R ₁ values are much less than the maximum spec	3	_	-	
DL	Crystal drive level	No external series resistor assumed	_	0.5	2	mW
F _{3SEPLI}	Third overtone separation from 3*F _{NOM}	High side	400	_	-	ppm
F _{3SEPLO}	Third overtone separation from 3*F _{NOM}	Low side	_	-	-200	ppm
C ₀	Crystal shunt capacitance		_	_	7	pF
C ₀ /C ₁	Ratio of shunt to motional capacitance		180	_	250	
C ₁	Crystal motional capacitance		14.4	18	21.6	fF

Recommended Operating Conditions

Parameter	Description	Min.	Тур.	Max.	Unit
V_{DD}	Operating Voltage	3.15	3.3	3.45	V
T _{AC}	Ambient Temperature (Commercial Temperature)	0	-	70	°C
C _{LOAD}	Max Output Load Capacitance	_	-	15	pF
t _{pu}	Power-up time for all V _{DD} s to reach minimum specified voltage (power ramps must be monotonic)	0.05	-	500	ms

DC Electrical Specifications (Commercial Temp: 0°to 70°C)

Parameter	Description	Test Conditions	Min.	Тур.	Max.	Unit
I _{OH}	Output High Current	$V_{OH} = V_{DD} - 0.5, V_{DD} = 3.3V \text{ (source)}$	12	24	-	mA
I _{OL}	Output Low Current	$V_{OL} = 0.5, V_{DD} = 3.3V (sink)$	12	24	-	mA
V _{IH}	Input High Voltage	CMOS Levels	0.7	_	_	V_{DD}
V _{IL}	Input High Voltage	CMOS Levels	_	_	0.3	V_{DD}
I _{IH}	Input High Current	$V_{IH}=V_{DD}$	_	5	10	μΑ
I _{IL}	Input Low Current	V _{IL} =0V	_	5	10	μΑ
C _{IN}	Input Capacitance		_	_	7	pF
I _{DD}	Supply Current	C _{LOAD} = 15 pF, V _{DD} = 3.45V	_	_	45	mA

AC Electrical Specifications (Commercial Temp: 0° to 70°C)

Parameter	Description	Test Conditions	Min.	Тур.	Max.	Unit
f _{ICLK-E}	Frequency, Input Clock	Input Clock Frequency, External Mode	-	10	_	MHz
LR	FailSafe Lock Range ^[1]	Range of reference ICLK for Safe = High	-250	-	+250	ppm
$DC = t_2/t_1$	Output Duty Cycle	Duty Cycle defined in Figure 1, measured at 50% of $V_{\rm DD}$	45	50	55	%
T _{PJIT1}	Clock Jitter	Period Jitter, Peak to Peak, 10,000 periods		-	250	ps
		RMS Period Jitter	_	_	50	ps

Note:

Document #: 38-07730 Rev. **

Dependent on crystals chosen and crystal specs.

AC Electrical Specifications (Commercial Temp: 0° to 70°C) (continued)

Parameter	Description	Description Test Conditions		Тур.	Max.	Unit
t ₆	PLL Lock Time	Time for PLL to lock within ± 150 ppm of target frequency	_	_	3	ms
t _{fs_lock}	FailSafe Lock Time	Time for PLL to lock to ICLK (outputs phase aligned with ICLK and Safe = High)	-	-	7	S
f _{error}	Frequency Synthesis Error	Actual mean frequency error vs. target	-	0	_	ppm
ER	Rising Edge Rate	Output Clock Edge Rate, Measured from 20% to 80% of V_{DD} , C_{LOAD} = 15 pF. See <i>Figure 2</i> .	0.8	1.4	2	V/ns
EF	Falling Edge Rate	Output Clock Edge Rate, Measured from 20% to 80% of V _{DD} , C _{LOAD} = 15 pF. See <i>Figure 2</i> .	0.8	1.4	2	V/ns

Voltage and Timing Definitions

Figure 1. Duty Cycle Definition; DC = t2/t1

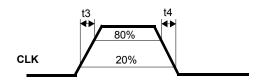
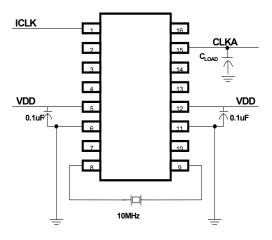
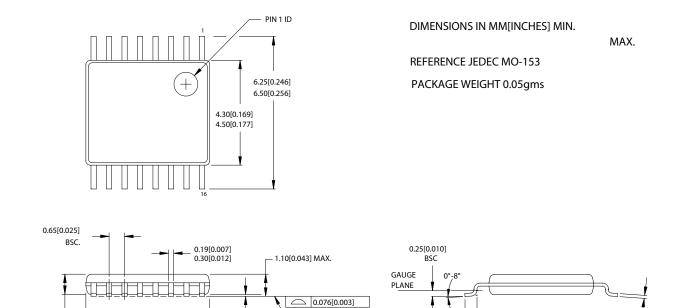



Figure 2. Rise and Fall Time Definitions: ER = $0.6 \times VDD / t3$, EF = $0.6 \times VDD / t4$

Test Circuit

Ordering Information

Ordering Code	Package Type	Operating Temperature Range
Lead-Free		
CY26049ZXC-22	16-lead TSSOP	Commercial 0° to 70°C
CY26049ZXC-22T	16-lead TSSOP—Tape and Reel	Commercial 0° to 70°C


0.85[0.033]

Package Drawing and Dimensions

4.90[0.193]

5.10[0.200]

16-lead TSSOP 4.40 MM Body Z16.173

0.05[0.002]

0.15[0.006]

51-85091-*A

0.09[[0.003]

0.20[0.008]

0.50[0.020]

0.70[0.027]

FailSafe and PacketClock are trademarks of Cypress Semiconductor. Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.

SEATING

Document History Page

Document Title: CY26049-22 FailSafe™ PacketClock™ Global Communications Clock Generator Document Number: 38-07730						
REV.	ECN No.	Issue Date	Orig. of Change	Description of Change		
**	308456	See ECN	RGL	New Data Sheet		