

TSL257T High-Sensitivity Light-to-Voltage Converter

General Description

The TSL257T is a high-sensitivity low-noise light-to-voltage optical converter that combines a photodiode and a transimpedance amplifier on a single monolithic CMOS integrated circuit. Output voltage is directly proportional to light intensity (irradiance) on the photodiode. The TSL257T has a transimpedance gain of 320 M Ω . The device has improved offset voltage stability and low power consumption and is supplied in a compact 4-lead surface-mount package.

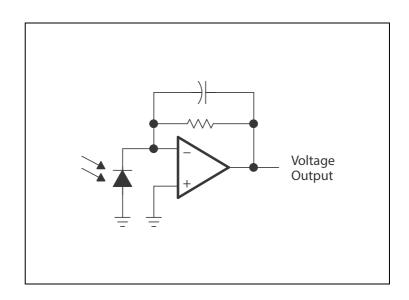
Ordering Information and Content Guide appear at end of datasheet.

Key Benefits & Features

The benefits and features of TSL257T, High-Sensitivity Light-to-Voltage Converter are listed below:

Figure 1: Added Value of Using TSL257T

Benefits	Features
Enables Extremely Fast Response to Change	Single Photo-diode and Trans Impedance Architecture
Enables Fast Response to Visible Light in Range of 400nm to 700nm Wavelengths	 160µs Output Rise-Time Response
Provides for High Sensitivity to Detect a Small Change in Light	• High Irradiance Responsivity: Typically $680 \text{mV}/(\mu \text{W}/\text{cm}^2)$ At $\lambda p = 640 \text{nm}$
Provides Full Dynamic Range	Rail-to-Rail Output Swing
Reduces Board Space Requirements while Simplifying Designs	• 2.6mm x 3.8mm 4-Lead SMD (T) Package


- Converts Light Intensity to Output Voltage
- Monolithic Silicon IC Containing Photodiode, Operational Amplifier, and Feedback Components
- High Sensitivity
- Single Voltage Supply Operation: (2.7V to 5.5V)
- Low Noise (200µVrms Typ to 1kH z)
- High Power-Supply Rejection (35dB at 1kHz)
- Low-Profile Surface-Mount Package

Functional Block Diagram

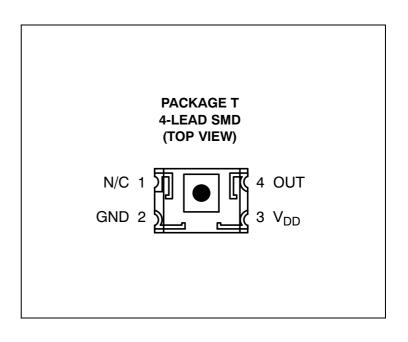

The functional blocks of this device are shown below:

Figure 2: TSL257T Block Diagram

Pin Assignment

Figure 3: Pin Diagram

dm

Figure 4: Terminal Functions

Terminal					
T Pkg No.	Name	Description			
1	N/C	No connection			
2	GND	Power supply ground (substrate). All voltages are referenced to GND.			
3	V _{DD}	Supply voltage			
4	OUT	Output voltage			

Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under Operating Conditions is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 5:

Absolute Maximum Ratings over Operating Free-Air Temperature Range (unless otherwise noted)

Symbol	Parameter	Min	Max	Unit
V _{DD}	Supply voltage ⁽¹⁾		6	V
۱ ₀	Output current		±10	mA
	Duration of short-circuit current at (or below) 25°C		5	S
T _A	Operating free-air temperature range	-25	85	°C
T _{STRG}	Storage temperature range	-25	85	°C
	Solder conditions in accordance with JEDEC-J-SRD-020A, maximum temperature		260	°C

Note(s):

1. All voltages are with respect to GND.

Electrical Characteristics

All limits are guaranteed. The parameters with min and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods.

Operating Conditions

All defined tolerances for external components in this specification need to be assured over the whole operation condition range and also over lifetime.

Figure 6:

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Unit
V _{DD}	Supply voltage	2.7		5.5	V
T _A	Operating free-air temperature range	0		70	°C

Figure 7:

```
Electrical Characteristics at V_{DD} = 5V, T_A = 25°C, \lambda_p = 640nm, R_L = 10k\Omega (unless otherwise noted) <sup>(1) (2) (3)</sup>
```

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit
V _D	Dark voltage	$E_e = 0$	0		15	mV
V _{OM}	Maximum output voltage	V _{DD} = 4.5V, No Load		4.49		V
VОМ	swing	$V_{DD} = 4.5V, R_L = 10k\Omega$	4	4.2		v
V _O	Output voltage	$E_e = 2.93 \mu W/cm^2$	1.5	2	2.5	V
α _{VD}	Temperature coefficient of dark voltage (V _D)	T _A = 0°C to 70°C		-15		μV/°C
R _e	Irradiance responsivity	See note (4)		680		mV/ (µW/cm ²)
PSRR	Power supply rejection ratio	$f_{ac} = 100 Hz^{(5)}$		55		dB
LOUV		$f_{ac} = 1 \text{ kHz}^{(5)}$		35		dB
I _{DD}	Supply current	$E_e = 2.93 \mu W/cm^2$		2	3.8	mA

Note(s):

1. Measured with R_L = 10k Ω between output and ground.

2. Optical measurements are made using small-angle incident radiation from a light-emitting diode (LED) optical source.

3. The input irradiance E_e is supplied by an AlInGaP LED with peak wavelength λ_p = 640nm.

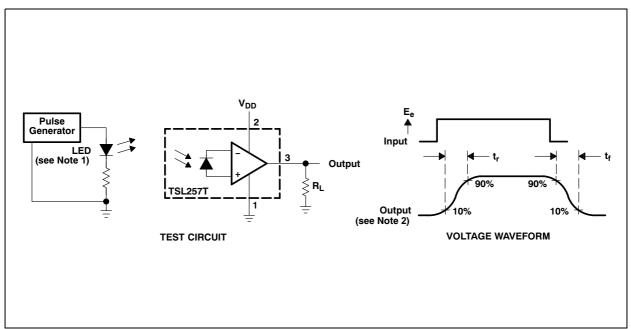
4. Irradiance responsivity is characterized over the range $V_0 = 0.1V$ to 4.5V. The best-fit straight line of Output Voltage V_0 versus Irradiance E_e over this range will typically have a positive extrapolated V_0 value for $E_e = 0$.

5. Power supply rejection ratio PSRR is defined as 20 log $(\Delta V_{DD}(f)/\Delta V_O(f))$ with $V_{DD}(f = 0) = 5V$ and $V_O(f = 0) = 2V$.

Figure 8:

Switching Characteristics at $V_{DD} = 5V$, $T_A = 25^{\circ}$ C, $\lambda_p = 640$ nm, $R_L = 10k\Omega$ (unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
t _r	Output pulse rise time, 10% to 90% of final value	See note (1) and Figure 9		160	250	μs
t _f	Output pulse fall time, 10% to 90% of final value	See note (1) and Figure 9		150	250	μs
t _s	Output settling time to 1% of final value	See note (1) and Figure 9		330		μs
	Integrated noise voltage	$f = dc to 1 kHz, E_e = 0$		200		μVrms
		$f = 10Hz, E_e = 0$		6		
V _n	Output noise voltage, rms	f = 100Hz, E _e = 0		6		$\frac{\mu V}{\sqrt{Hz}}(rms)$
		$f = 1 \text{ kHz}, E_e = 0$		7		


Note(s):

1. Switching characteristics apply over the range $V_{O} = 0.1V$ to 4.5V.

Parameter Measurement Information

Figure 9: Switching Times

Note(s):

1. The input irradiance is supplied by a pulsed AllnGaP light-emitting diode with the following characteristics: $\lambda_p = 640$ nm, $t_r < 1\mu$ s, $t_f < 1\mu$ s.

2. The output waveform is monitored on an oscilloscope with the following characteristics: $t_r < 100$ ns, $Z_i \ge 1M\Omega$, $C_i \le 20$ pF.

Typical Operating Characteristics

Figure 10: Photodiode Spectral Responsivity

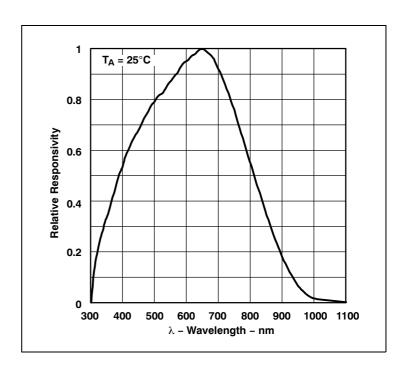


Figure 11: Power Supply Rejection Ratio vs. Frequency

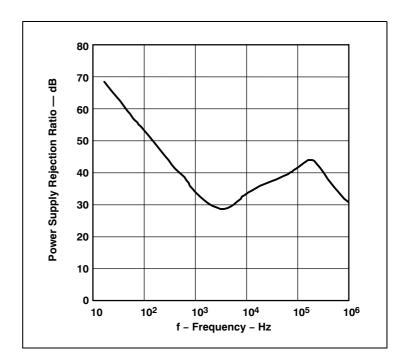
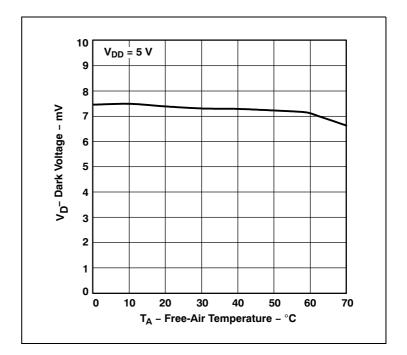
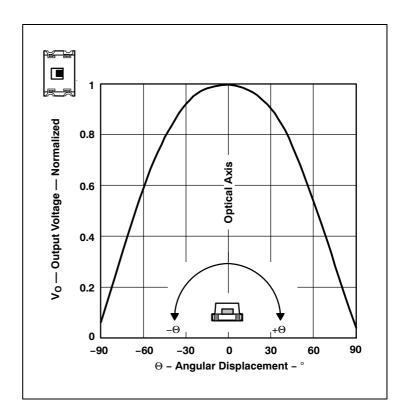
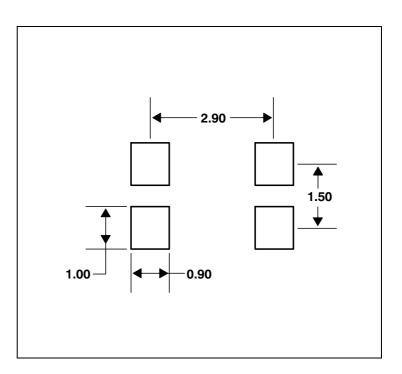




Figure 12: Dark Voltage vs. Free-Air Temperature





Application Information

PCB Pad Layout

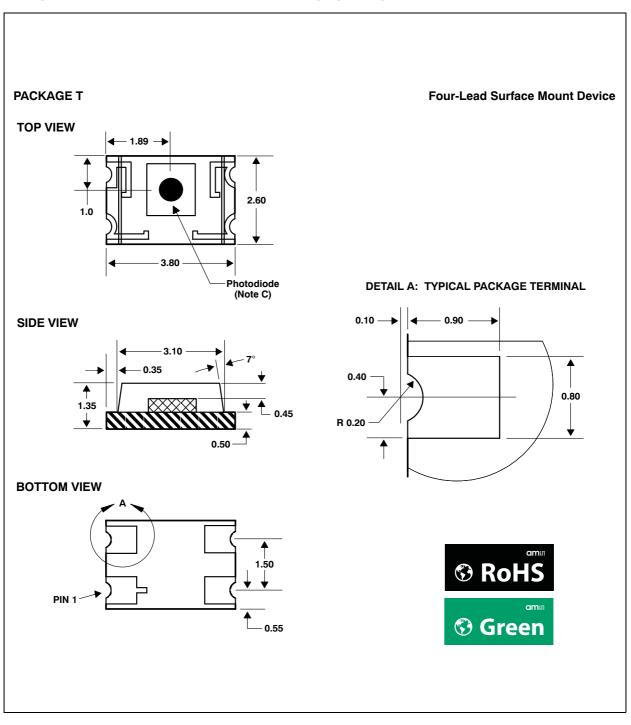
Suggested PCB pad layout guidelines for the T package are shown in Figure 15.

Figure 15: Suggested T Package PCB Layout

Note(s):

1. All linear dimensions are in millimeters.

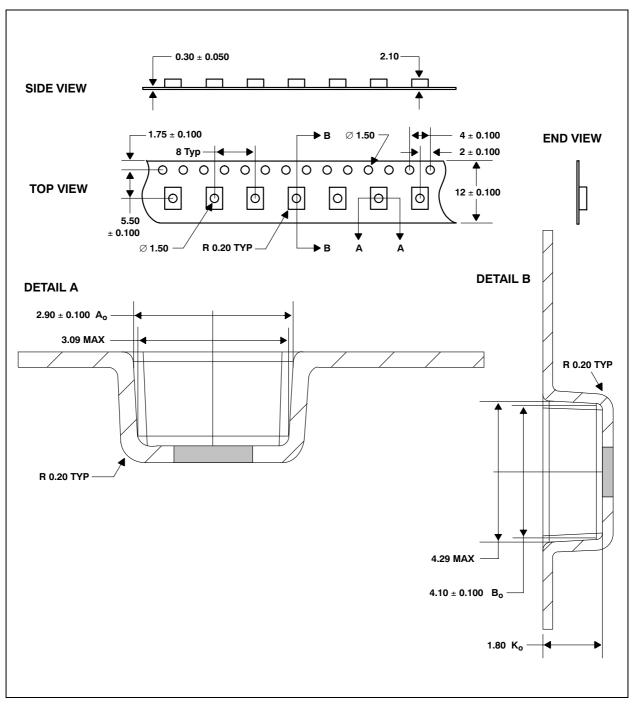
2. This drawing is subject to change without notice.



Packaging Mechanical Data

The TSL257T is supplied in a low-profile surface-mount package. This package contains no lead (Pb).

Figure 16:


Package T - Four-Lead Surface Mount Device Packaging Configuration

Note(s):

- 1. All linear dimensions are in millimeters.
- 2. Terminal finish is gold.
- 3. The center of the 0.75mm diameter integrated photodiode active area is typically located 0.1mm above the center of the package.
- 4. Dimension tolerance is ± 0.15 mm.
- 5. This drawing is subject to change without notice.

Figure 17: Package SM - Plastic Surface Mount Side-Looker Package Configuration

Note(s):

- 1. All linear dimensions are in millimeters.
- 2. The dimensions on this drawing are for illustrative purposes only. Dimensions of an actual carrier may vary slightly.
- 3. Symbols on drawing $A_{\rm o},\,B_{\rm o},\,{\rm and}\,K_{\rm o}$ are defined in ANSI EIA Standard 481-B 2001.
- 4. Each reel is 178 millimeters in diameter and contains 1000 parts.
- 5. ams packaging tape and reel conform to the requirements of EIA Standard 481-B.
- 6. In accordance with EIA standard, device pin 1 is located next to the sprocket holes in the tape.
- 7. This drawing is subject to change without notice.

Manufacturing Information

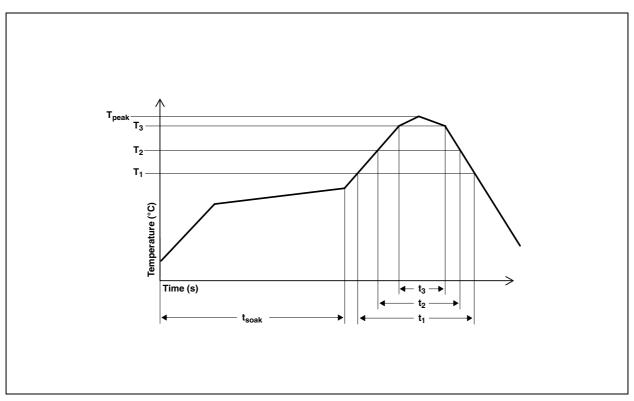

The reflow profile specified here describes expected maximum heat exposure of devices during the solder reflow process of the device on a PWB. Temperature is measured at the top of the device. Devices should be limited to one pass through the solder reflow profile.

Figure 18: TSL257T Solder Reflow Profile

Parameter	Reference	TSL257T
Average temperature gradient in preheating		2.5°C/s
Soak time	t _{soak}	2 to 3 minutes
Time above T ₁ , 217°C	t ₁	Max 60 s
Time above T ₂ , 230°C (T ₂)	t ₂	Max 50 s
Time above T ₃ , (T _{peak} - 10°C)	t ₃	Max 10 s
Peak temperature in reflow	T _{peak}	260°C (-0°C/5°C)
Temperature gradient in cooling		Max -5°C/s

Figure 19:

TSL257T Solder Reflow Profile

Note(s):

1. Not to scale - for reference only.

Moisture Sensitivity

Optical characteristics of the device can be adversely affected during the soldering process by the release and vaporization of moisture that has been previously absorbed into the package molding compound. To ensure the package molding compound contains the smallest amount of absorbed moisture possible, each device is dry-baked prior to being packed for shipping. Devices are packed in a sealed aluminized envelope with silica gel to protect them from ambient moisture during shipping, handling, and storage before use.

This package has been assigned a moisture sensitivity level of MSL 3 and the devices should be stored under the following conditions:

- Temperature Range: 5°C to 50°C
- Relative Humidity: 60% maximum
- Total Time: 6 months from the date code on the aluminized envelope if unopened
- Opened Time: 168 hours or fewer

Rebaking will be required if the devices have been stored unopened for more than 6 months or if the aluminized envelope has been open for more than 168 hours. If rebaking is required, it should be done at 90°C for 4 hours.

Ordering & Contact Information

Figure 20: Ordering Information

Ordering Code	Device	T _A	Package - Leads	Package Designator
TSL257T	TSL257	0°C to 70°C	3-Lead Surface-Mount Device	Т

Buy our products or get free samples online at: www.ams.com/ICdirect

Technical Support is available at: www.ams.com/Technical-Support

Provide feedback about this document at: www.ams.com/Document-Feedback

For further information and requests, e-mail us at: ams_sales@ams.com

For sales offices, distributors and representatives, please visit: www.ams.com/contact

Headquarters

ams AG Tobelbaderstrasse 30 8141 Premstaetten Austria, Europe

Tel: +43 (0) 3136 500 0

Website: www.ams.com

RoHS Compliant & ams Green Statement

RoHS: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. This product is provided by ams AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

Document Status

Document Status	Product Status	Definition
Product Preview	Pre-Development	Information in this datasheet is based on product ideas in the planning phase of development. All specifications are design goals without any warranty and are subject to change without notice
Preliminary Datasheet	Pre-Production	Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice
Datasheet	Production	Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade
Datasheet (discontinued)	Discontinued	Information in this datasheet is based on products which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade, but these products have been superseded and should not be used for new designs

Revision Information

Changes from 065B (2007-Apr) to current revision 1-00 (2016-Jul-18)	Page
Content of TAOS datasheet was converted to the latest ams design	
Added Figure 1	1
Added Figure 20	16

Note(s):

1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.

2. Correction of typographical errors is not explicitly mentioned.

Content Guide

1 General Description

- 1 Key Benefits & Features
- 2 Functional Block Diagram
- 3 Pin Assignment
- 4 Absolute Maximum Ratings

5 Electrical Characteristics

5 Operating Conditions

7 Parameter Measurement Information

8 Typical Characteristics

11 Application Information

11 PCB Pad Layout

12 Packaging Mechanical Data

- 12 Package T Four-Lead Surface Mount Device Packaging Configuration
- 13 Plastic Surface Mount Side-Looker Package

14 Manufacturing Information

- 15 Moisture Sensitivity
- 16 Ordering & Contact Information
- 17 RoHS Compliant & ams Green Statement
- **18 Copyrights & Disclaimer**
- 19 Document Status
- 20 Revision Information